2,404 research outputs found

    The vertical structure and kinematics of grand design spirals

    Get PDF
    We use an N-body simulation to study the 3D density distribution of spirals and the resulting stellar vertical velocities. Relative to the disc's rotation, the phase of the spiral's peak density away from the mid-plane trails that at the mid-plane. In addition, at fixed radius the density distribution is azimuthally skewed, having a shallower slope on the trailing side inside corotation and switching to shallower on the leading side beyond corotation. The spirals induce non-zero average vertical velocities, 〈Vz〉, as large as 〈Vz〉 ∼ 10–20 km s−1, consistent with recent observations in the Milky Way. The vertical motions are compressive (towards the mid-plane) as stars enter the spiral, and expanding (away from the mid-plane) as they leave it. Since stars enter the spiral on the leading side outside corotation and on the trailing side within corotation, the relative phase of the expanding and compressive motions switches sides at corotation. Moreover, because stars always enter the spiral on the shallow density gradient side and exit on the steeper side, the expanding motions are larger than the compressing motion

    Axisymmetric bending oscillations of stellar disks

    Get PDF
    Self-gravitating stellar disks with random motion support both exponentially growing and, in some cases, purely oscillatory axisymmetric bending modes, unlike their cold disk counterparts. A razor-thin disk with even a very small degree of random motion in the plane is both unstable and possesses a discrete spectrum of neutral modes, irrespective of the sharpness of the edge. Random motion normal to the disk plane has a stabilizing effect but at the same time allows bending waves to couple to the internal vibrations of the particles, which causes the formerly neutral modes to decay through Landau damping. Focusing first on instabilities, I here determine the degree of random motion normal to the plane needed to suppress global, axisymmetric, bending instabilities in a family of self-gravitating disks. As found previously, bending instabilities are suppressed only when the thickness exceeds that expected from a na\"\i ve local criterion when the degree of pressure support within the disk plane is comparable to, or exceeds, the support from rotation. A modest disk thickness is adequate for the bending stability of most disk galaxies, except perhaps near their centers. The discretization of the neutral spectrum in a zero-thickness disk is due to the existence of a turning point for bending waves in a warm disk, which is absent when the disk is cold. When the disk is given a finite thickness, the discrete neutral modes generally become strongly damped through wave-particle interactions. It is surprising therefore that I find some simulations of warm, stable disks can support (quasi-)neutral, large-scale, bending modes that decay very slowly, if at all.Comment: 19 pages plain TeX with 7 PostScript figures; tarred, gzipped and uuencoded (406 KB). Revised version submitted to Ap

    A Recent Lindblad Resonance in the Solar Neighbourhood

    Full text link
    Stars in the solar neighbourhood do not have a smooth distribution of velocities. Instead, the distribution of velocity components in the Galactic plane manifests a great deal of kinematic substructure. Here I present an analysis in action-angle variables of the Geneva-Copenhagen survey of ~14,000 nearby F & G dwarfs with distances and full space motions. I show that stars in the so-called "Hyades stream" have both angle and action variables characteristic of their having been scattered at an inner Lindblad resonance of a rotating disturbance potential. This discovery seems to favour spiral patterns as recurrent, short-lived instabilities.Comment: 12 pages, 10 figures to appear in MNRAS. Minor revisions from original versio

    Three Mechanisms for Bar Thickening

    Full text link
    We present simulations of bar-unstable stellar discs in which the bars thicken into box/peanut shapes. Detailed analysis of the evolution of each model revealed three different mechanisms for thickening the bars. The first mechanism is the well-known buckling instability, the second is the vertical excitation of bar orbits by passage through the 2:1 vertical resonance, and the third is a gradually increasing fraction of bar orbits trapped into this resonance. Since bars in many galaxies may have formed and thickened long ago, we have examined the models for fossil evidence in the velocity distribution of stars in the bar, finding a diagnostic to discriminate between a bar that had buckled from the other two mechanisms.Comment: 18 pages, 17 figures, accepted to appear in MNRAS, comments welcom
    corecore