35 research outputs found

    Human HSP70-escort protein 1 (hHep1) interacts with negatively charged lipid bilayers and cell membranes

    Get PDF
    Human Hsp70-escort protein 1 (hHep1) is a cochaperone that assists in the function and stability of mitochondrial HSPA9. Similar to HSPA9, hHep1 is located outside the mitochondria and can interact with liposomes. In this study, we further investigated the structural and thermodynamic behavior of interactions between hHep1 and negatively charged liposomes, as well as interactions with cellular membranes. Our results showed that hHep1 interacts peripherally with liposomes formed by phosphatidylserine and cardiolipin and remains partially structured, exhibiting similar affinities for both. In addition, after being added to the cell membrane, recombinant hHep1 was incorporated by cells in a dose-dependent manner. Interestingly, the association of HSPA9 with hHep1 improved the incorporation of these proteins into the lipid bilayer. These results demonstrated that hHep1 can interact with lipids also present in the plasma membrane, indicating roles for this cochaperone outside of mitochondria

    KSHV gB associated RGD interactions promote attachment of cells by inhibiting the potential migratory signals induced by the disintegrin-like domain

    Get PDF
    Background: Kaposi's sarcoma-associated herpesvirus (KSHV) glycoprotein B (gB) is not only expressed on the envelope of mature virions but also on the surfaces of cells undergoing lytic replication. Among herpesviruses, KSHV gB is the only glycoprotein known to possess the RGD (Arg-Gly-Asp) binding integrin domain critical to mediating cell attachment. Recent studies described gB to also possess a disintegrin-like domain (DLD) said to interact with non-RGD binding integrins. We wanted to decipher the roles of two individually distinct integrin binding domains (RGD versus DLD) within KSHV gB in regulating attachment of cells over cell migration

    A transcriptomic analysis of gene expression in the venom gland of the snake Bothrops alternatus (urutu)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The genus <it>Bothrops </it>is widespread throughout Central and South America and is the principal cause of snakebite in these regions. Transcriptomic and proteomic studies have examined the venom composition of several species in this genus, but many others remain to be studied. In this work, we used a transcriptomic approach to examine the venom gland genes of <it>Bothrops alternatus</it>, a clinically important species found in southeastern and southern Brazil, Uruguay, northern Argentina and eastern Paraguay.</p> <p>Results</p> <p>A cDNA library of 5,350 expressed sequence tags (ESTs) was produced and assembled into 838 contigs and 4512 singletons. BLAST searches of relevant databases showed 30% hits and 70% no-hits, with toxin-related transcripts accounting for 23% and 78% of the total transcripts and hits, respectively. Gene ontology analysis identified non-toxin genes related to general metabolism, transcription and translation, processing and sorting, (polypeptide) degradation, structural functions and cell regulation. The major groups of toxin transcripts identified were metalloproteinases (81%), bradykinin-potentiating peptides/C-type natriuretic peptides (8.8%), phospholipases A<sub>2 </sub>(5.6%), serine proteinases (1.9%) and C-type lectins (1.5%). Metalloproteinases were almost exclusively type PIII proteins, with few type PII and no type PI proteins. Phospholipases A<sub>2 </sub>were essentially acidic; no basic PLA<sub>2 </sub>were detected. Minor toxin transcripts were related to L-amino acid oxidase, cysteine-rich secretory proteins, dipeptidylpeptidase IV, hyaluronidase, three-finger toxins and ohanin. Two non-toxic proteins, thioredoxin and double-specificity phosphatase Dusp6, showed high sequence identity to similar proteins from other snakes. In addition to the above features, single-nucleotide polymorphisms, microsatellites, transposable elements and inverted repeats that could contribute to toxin diversity were observed.</p> <p>Conclusions</p> <p><it>Bothrops alternatus </it>venom gland contains the major toxin classes described for other <it>Bothrops </it>venoms based on trancriptomic and proteomic studies. The predominance of type PIII metalloproteinases agrees with the well-known hemorrhagic activity of this venom, whereas the lower content of serine proteases and C-type lectins could contribute to less marked coagulopathy following envenoming by this species. The lack of basic PLA<sub>2 </sub>agrees with the lower myotoxicity of this venom compared to other <it>Bothrops </it>species with these toxins. Together, these results contribute to our understanding of the physiopathology of envenoming by this species.</p

    Radicicol improves regeneration of skeletal muscle previously damaged by crotoxin in mice

    No full text
    This work investigates the influence of heat shock proteins (HSPs) on necrosis and subsequent skeletal muscle regeneration induced by crotoxin (CTX), the major component of Crotalus durissus terrificus venom. Mice were treated with radicicol, a HSP inductor, followed by an intramuscular injection of CTX into the gastrocnemius muscle. Treated groups were sacrificed 1, 10 and 21 days after CTX injection. Muscle histological sections were stained with toluidine blue and assayed for acid phosphatase or immunostained with either neuronal cell adhesion molecule (NCAM) or neonatal myosin heavy chain (MHCn). Muscle samples were also submitted to Western blotting analysis. The results show that CTX alone and CTX combined with radicicol induced a similar degree of myofiber necrosis. CTX-injured muscles treated with radicicol had increased cross-sectional areas at 10 and 21 days post-lesion compared with untreated CTX-injured muscles. Additionally, radicicol significantly increased the number of NCAM-positive satellite cells in the gastrocnemius at one day post-CTX injury. CTX-injured Muscles treated with radicicol contained more MHCn-positive regenerating myofibers compared with untreated CTX-injured muscles. These results suggest that HSPs contribute to the regeneration of myofibers damaged by CTX. Additionally, further studies should investigate the potential therapeutic effects of radicicol in skeletal muscles affected by Crotalus venom. (C) 2008 Elsevier Ltd. All rights reserved.FAPESP (Fundacao de Amparo a Pesquisa do Estado de Sao Paulo, Brazil

    Recombinant RGD-disintegrin DisBa-01 blocks integrin αvβ3 and impairs VEGF signaling in endothelial cells

    No full text
    Abstract Background Integrins mediate cell adhesion, migration, and survival by connecting the intracellular machinery with the surrounding extracellular matrix. Previous studies demonstrated the interaction between αvβ3 integrin and VEGF type 2 receptor (VEGFR2) in VEGF-induced angiogenesis. DisBa-01, a recombinant His-tag fusion, RGD-disintegrin from Bothrops alternatus snake venom, binds to αvβ3 integrin with nanomolar affinity blocking cell adhesion to the extracellular matrix. Here we present in vitro evidence of a direct interference of DisBa-01 with αvβ3/VEGFR2 cross-talk and its downstream pathways. Methods Human umbilical vein (HUVECs) were cultured in plates coated with fibronectin (FN) or vitronectin (VN) and tested for migration, invasion and proliferation assays in the presence of VEGF, DisBa-01 (1000 nM) or VEGF and DisBa-01 simultaneously. Phosphorylation of αvβ3/VEGFR2 receptors and the activation of intracellular signaling pathways were analyzed by western blotting. Morphological alterations were observed and quantified by fluorescence confocal microscopy. Results DisBa-01 treatment of endothelial cells inhibited critical steps of VEGF-mediated angiogenesis such as migration, invasion and tubulogenesis. The blockage of αvβ3/VEGFR2 cross-talk by this disintegrin decreases protein expression and phosphorylation of VEGFR2 and β3 integrin subunit, regulates FAK/SrC/Paxillin downstream signals, and inhibits ERK1/2 and PI3K pathways. These events result in actin re-organization and inhibition of HUVEC migration and adhesion. Labelled-DisBa-01 colocalizes with αvβ3 integrin and VEGFR2 in treated cells. Conclusions Disintegrin inhibition of αvβ3 integrin blocks VEGFR2 signalling, even in the presence of VEGF, which impairs the angiogenic mechanism. These results improve our understanding concerning the mechanisms of pharmacological inhibition of angiogenesis

    Creatinine- versus cystatine C-based equations in assessing the renal function of candidates for liver transplantation with cirrhosis

    No full text
    International audienceRenal dysfunction is frequent in liver cirrhosis and is a strong prognostic predictor of orthotopic liver transplantation (OLT) outcome. Therefore, an accurate evaluation of the glomerular filtration rate (GFR) is crucial in pre-OLT patients. However, in these patients plasma creatinine (Pcr) is inaccurate and the place of serum cystatine C (CystC) is still debated. New GFR-predicting equations, based on standardized assays of Pcr and/or CystC, have been recently recommended in the general population but their performance in cirrhosis patients has been rarely studied. We evaluated the performance of the recently published Chronic Kidney Disease Epidemiology Collaboration equations (CKD-EPI-Pcr, CKD-EPI-CystC, and CKD-EPI-Pcr-CystC) and the more classical ones (4- and 6-variable MDRD and Hoek formulas) in cirrhosis patients referred for renal evaluation before OLT. Inulin clearance was performed in 202 consecutive patients together with the determination of Pcr and CystC with assays traceable to primary reference materials. The performance of the GFR-predicting equations was evaluated according to ascites severity (no, moderate, or refractory) and to hepatic and renal dysfunctions (MELD score \textless/= or \textgreater15 and KDOQI stages, respectively). In the whole population, CystC-based equations showed a better performance than Pcr-based ones (lower bias and higher 10% and 30% accuracies). CKD-EPI-CystC equation showed the best performance whatever the ascites severity and in presence of a significant renal dysfunction (GFR \textless60 mL/min/1.73 m(2)). CONCLUSION: Pcr-based GFR predicting equations are not reliable in pre-OLT patients even when an IDMS-traceable enzymatic Pcr assay is used. Whenever a CystC-assay traceable to primary reference materials is performed and when a true measurement of GFR is not possible, CystC-based equations, especially CKD-EPI-CystC, may be recommended to evaluate renal function and for KDOQI staging

    Inhibition of α<sub>v</sub>β<sub>3</sub> integrin induces loss of cell directionality of oral squamous carcinoma cells (OSCC)

    Get PDF
    <div><p>The connective tissue formed by extracellular matrix (ECM) rich in fibronectin and collagen consists a barrier that cancer cells have to overpass to reach blood vessels and then a metastatic site. Cell adhesion to fibronectin is mediated by α<sub>v</sub>β<sub>3</sub> and α<sub>5</sub>β<sub>1</sub> integrins through an RGD motif present in this ECM protein, thus making these receptors key targets for cell migration studies. Here we investigated the effect of an RGD disintegrin, Dis<i>Ba</i>-01, on the migration of human fibroblasts (BJ) and oral squamous cancer cells (OSCC, SCC25) on a fibronectin-rich environment. Time-lapse images were acquired on fibronectin-coated glass-bottomed dishes. Migration speed and directionality analysis indicated that OSCC cells, but not fibroblasts, showed significant decrease in both parameters in the presence of Dis<i>Ba</i>-01 (1μM and 2μM). Integrin expression levels of the α<sub>5</sub>, α<sub>v</sub> and β<sub>3</sub> subunits were similar in both cell lines, while β1 subunit is present in lower levels on the cancer cells. Next, we examined whether the effects of Dis<i>Ba</i>-01 were related to changes in adhesion properties by using paxillin immunostaining and total internal reflection fluorescence TIRF microscopy. OSCCs in the presence of Dis<i>Ba</i>-01 showed increased adhesion sizes and number of maturing adhesion. The same parameters were analyzed usingβ3-GFP overexpressing cells and showed that β3 overexpression restored cell migration velocity and the number of maturing adhesion that were altered by Dis<i>Ba</i>-01. Surface plasmon resonance analysis showed that Dis<i>Ba</i>-01 has 100x higher affinity for α<sub>v</sub>β<sub>3</sub> integrin than forα5β1 integrin. In conclusion, our results suggest that the α<sub>v</sub>β<sub>3</sub> integrin is the main receptor involved in cell directionality and its blockage may be an interesting alternative against metastasis.</p></div
    corecore