356 research outputs found

    Validity and effects of placement of velocity-based training devices

    Get PDF
    Velocity-based training (VBT) is a resistance training method by which training variables are manipulated based on kinematic outcomes, e.g., barbell velocity. The better precision for monitoring and manipulating training variables ascribed to VBT assumes that velocity is measured and communicated correctly. This study assessed the validity of several mobile and one stationary VBT device for measuring mean and peak concentric barbell velocity over a range of velocities and exercises, including low- and high-velocity, ballistic and non-ballistic, and plyometric and non-plyometric movements, and to quantify the isolated effect of device attachment point on measurement validity. GymAware (r = 0.90-1, standard error of the estimate, SEE = 0.01-0.08 m/s) and Quantum (r = 0.88-1, SEE = 0.01-0.18 m/s) were most valid for mean and peak velocity, with Vmaxpro (r = 0.92-0.99, SEE = 0.02-0.13 m/s) close behind. Push (r = 0.69-0.96, SEE = 0.03-0.17 m/s) and Flex (r = 0.60-0.94, SEE = 0.02-0.19 m/s) showed poorer validity (especially for higher-velocity exercises), although typical errors for mean velocity in exercises other than hang power snatch were acceptable. Effects of device placement were detectable, yet likely small enough (SEE < 0.1 m/s) to be negligible in training settings

    Kinematic and Kinetic Characteristics of Repetitive Countermovement Jumps with Accentuated Eccentric Loading.

    Get PDF
    Two methods for challenging the musculoskeletal and nervous systems to better exploit the stretch-shortening cycle (SSC) mechanism during plyometric training are reactive strength exercises and accentuated eccentric loading (AEL). Combining repetitive, reactive jumping with AEL poses a novel approach, in which the effects of both methods may be combined to elicit a unique stimulus. This study compared kinematic, kinetic, and electromyographic variables between a control (CON1) and two AEL conditions (AEL2 and AEL3). Additionally, non-reactive and reactive jumps performed within these sets were compared. Participants performed two sets of six countermovement jumps (CMJ) under each loading condition. AEL3 had moderate to large positive effects (es) on peak and mean eccentric force (es = 1.1, 0.8, respectively; both p < 0.01), and eccentric loading rate (es = 0.8, p < 0.01), but no effect on concentric variables or muscle activation intensity. The effects of AEL2 were similar but smaller. With or without AEL, there were moderate to large positive effects associated with reactive CMJ (second jump in a set, compared to the first) on peak and mean eccentric velocity (es = 1.7, 0.8, respectively; both p < 0.01), peak and mean eccentric force (es = 1.3, 1.2, p < 0.01), eccentric loading rate (es = 1.3, p < 0.01) and muscle activity (es = 1.8–1.9, p < 0.01). Concentric variables did not differ. Thus, the flight phase and act of landing during reactive jumps elicited greater increases in eccentric forces, loading rates, and muscle activity than AEL. Nonetheless, kinetic variables were greatest when AEL was combined with reactive jumping. Considering the limitations or complexity associated with most AEL protocols, sets of repetitive (reactive) CMJ may be more pragmatic for augmenting eccentric kinetic variables and neuromuscular stimuli during training

    Broomrape (Orobanche Cumana Wallr.) resistance breeding utilizing wild Helianthus species

    Get PDF
    Wild Helianthus species possess valuable resistance genes for sunflower broomrape (Orobanche cumana Wallr.), especially the 39 largely underutilized perennial species. Resistance to race F has been transferred into a cultivated background via bridging of interspecific amphiploids. More recently, a single dominant gene resistant to race G was identified in annual H. debilis ssp. tardi-florus and transferred into cultivated HA 89. Interspecific crosses between wild annual Helianthus species and cultivated lines are relatively easy compared to those involving wild perennial species, which were made easier only after the development of embryo rescue techniques. Interspecific amphiploids resulting from colchicine treatment of F1 hybrids provide bridging materials for transferring genes without relying on embryo rescue. Among the diploid, tetraploid, and hexaploid perennial species, the speed of gene utilization follows the ploidy level of diploids, tetraploids, and hexaploids due to the time-consuming backcrosses required to eliminate the extra chromosomes in the latter two groups. In the development of pre-breeding materials, the retention rate of genetic material of the wild species is another concern with each additional backcross. For crosses involving tetraploid and hexaploid wild perennials, the use of 2n=51 chromosome F1 or BC1F1 generation, as pollen source, could accelerate chromosome reduction to 2n=34 in BC1F1 or BC2F1, resulting in useful materials with fewer backcrosses for trait selection.This work is partially funded by a National Sclerotinia Grant awarded to C.C. Jan.Peer Reviewe

    Approval Voting on Dichotomous Preferences

    Get PDF
    The aim of this paper is to find normative foundations of Approval Voting. In order to show that Approval Voting is the only social choice function that satisfies anonymity, neutrality, strategy-proofness and strict monotonicity we rely on an intermediate result which relates strategy-proofness of a social choice function to the properties of Independence of Irrelevant Alternatives and monotonicity of the corresponding social welfare function. Afterwards we characterize Approval Voting by means of strict symmetry, neutrality and strict monotonicity and relate this result to May's Theorem. Finally, we show that it is possible to substitute the property of strict monotonicity by the one efficiency of in the second characterization.This research was undertaken with support from the fellowship 2001FI-00451 of the Generalitat de Catalunya and from the research grant BEC2002-02130 of the Ministerio de Ciencia y TecnologĂ­a of Spain

    The “Journal of Functional Morphology and Kinesiology” Journal Club Series: Resistance Training

    Get PDF
    We are glad to introduce the Second Journal Club of Volume Five, Second Issue. This edition is focused on relevant studies published in the last few years in the field of resistance training, chosen by our Editorial Board members and their colleagues. We hope to stimulate your curiosity in this field and to share with you the passion for the sport, seen also from the scientific point of view

    Intrinsic energy flow in laser-excited 3d ferromagnets

    Get PDF
    Ultrafast magnetization dynamics are governed by energy flow between electronic, magnetic, and lattice degrees of freedom. A quantitative understanding of these dynamics must be based on a model that agrees with experimental results for all three subsystems. However, ultrafast dynamics of the lattice remain largely unexplored experimentally. Here we combine femtosecond electron diffraction experiments of the lattice dynamics with energy-conserving atomistic spin dynamics (ASD) simulations and ab initio calculations to study the intrinsic energy flow in the 3d ferromagnets cobalt (Co) and iron (Fe). The simulations yield a good description of experimental data, in particular an excellent description of our experimental results for the lattice dynamics. We find that the lattice dynamics are influenced significantly by the magnetization dynamics due to the energy cost of demagnetization. Our results highlight the role of the spin system as the dominant heat sink in the first hundreds of femtoseconds. Together with previous findings for nickel [Zahn et al., Phys. Rev. Research 3, 023032 (2021)], our work demonstrates that energy-conserving ASD simulations provide a general and consistent description of the laser-induced dynamics in all three elemental 3d ferromagnets

    Selective inferior petrosal sinus sampling without venous outflow diversion in the detection of a pituitary adenoma in Cushing's syndrome

    Get PDF
    Introduction: Conventional MRI may still be an inaccurate method for the non-invasive detection of a microadenoma in adrenocorticotropin (ACTH)-dependent Cushing's syndrome (CS). Bilateral inferior petrosal sinus sampling (BIPSS) with ovine corticotropin-releasing hormone (oCRH) stimulation is an invasive, but accurate, intervention in the diagnostic armamentarium surrounding CS. Until now, there is a continuous controversial debate regarding lateralization data in detecting a microadenoma. Using BIPSS, we evaluated whether a highly selective placement of microcatheters without diversion of venous outflow might improve detection of pituitary microadenoma. Methods: We performed BIPSS in 23 patients that met clinical and biochemical criteria of CS and with equivocal MRI findings. For BIPSS, the femoral veins were catheterized bilaterally with a 6-F catheter and the inferior petrosal sinus bilaterally with a 2.7-F microcatheter. A third catheter was placed in the right femoral vein. Blood samples were collected from each catheter to determine ACTH blood concentration before and after oCRH stimulation. Results: In 21 patients, a central-to-peripheral ACTH gradient was found and the affected side determined. In 18 of 20 patients where transsphenoidal partial hypophysectomy was performed based on BIPSS findings, microadenoma was histologically confirmed. BIPSS had a sensitivity of 94% and a specificity of 67% after oCRH stimulation in detecting a microadenoma. Correct localization of the adenoma was achieved in all Cushing's disease patients. Conclusion: BIPSS remains the gold standard in the detection of a microadenoma in CS. Our findings show that the selective placement of microcatheters without venous outflow diversion might further enhance better recognition to localize the pituitary tumo

    The “Journal of Functional Morphology and Kinesiology” Journal Club Series: Highlights on Recent Papers in Corrective Exercise

    Get PDF
    We are glad to introduce the Journal Club of Volume Five, fourth Issue. This edition is focused on relevant studies published in the last few years in the field of corrective exercise, chosen by our Editorial Board members and their colleagues. We hope to stimulate your curiosity in this field and to share a passion for sport with you, seen also from the scientific point of view. The Editorial Board members wish you an inspiring lecture

    Lattice dynamics and ultrafast energy flow between electrons, spins, and phonons in a 3d ferromagnet

    Get PDF
    The ultrafast dynamics of magnetic order in a ferromagnet are governed by the interplay between electronic, magnetic, and lattice degrees of freedom. In order to obtain a microscopic understanding of ultrafast demagnetization, information on the response of all three subsystems is required. A consistent description of demagnetization and microscopic energy flow, however, is still missing. Here, we combine a femtosecond electron diffraction study of the ultrafast lattice response of nickel to laser excitation with ab initio calculations of the electron-phonon interaction and energy-conserving atomistic spin dynamics simulations. Our model is in agreement with the observed lattice dynamics and previously reported electron and magnetization dynamics. Our approach reveals that the spin system is the dominating heat sink in the initial few hundred femtoseconds and implies a transient nonthermal state of the spins. Our results provide a clear picture of the microscopic energy flow between electronic, magnetic, and lattice degrees of freedom on ultrafast timescales and constitute a foundation for theoretical descriptions of demagnetization that are consistent with the dynamics of all three subsystems
    • …
    corecore