19 research outputs found

    Low seroprevalence of hepatitis E virus in pregnant women in an urban area near Pretoria, South Africa

    Get PDF
    OBJECTIVES : Hepatitis E virus (HEV) infection is a globally neglected health problem with a high burden in resource-poor communities. Pregnant women are at increased risk of complications. This pilot study sought to assess the seroprevalence of HEV infection in pregnant women at Dr George Mukhari Academic Hospital, South Africa. METHODS : Stored serum samples from 384 HIV-uninfected pregnant women attending the antenatal clinic were initially screened for HEV total antibody. Positive samples were further evaluated for the presence of IgG and IgM antibody isotypes, using commercial ELISA assays. HEV RNA was assessed in antibody-positive samples utilizing qRT-PCR assay. RESULTS : The sample consisted of women with a median age of 31 years (interquartile range: 28–35 years). Total HEV antibody was detected in 12/384 (3.13%, 95% CI: 1.80–5.38) of these pregnant women. All 12 samples were IgG HEV antibody positive, but none tested positive for IgM antibody or for HEV RNA, demonstrating a lack of current or recent exposure. CONCLUSIONS : Our study revealed a low seroprevalence of HEV among pregnant women from an urban area north of Pretoria. This observation warrants further attention to the circulation of HEV in this population, and a greater understanding of the epidemiology of the infection in South Africa.The South African Ministry of Higher Education, Science and Innovation, and the National Research Foundation.http://www.elsevier.com/locate/ijregihj2023Medical Virolog

    Genetic characterisation of South African and Mozambican bovine rotaviruses reveals a typical bovine-like artiodactyl constellation derived through multiple reassortment events

    Get PDF
    This study presents whole genomes of seven bovine rotavirus strains from South Africa and Mozambique. Double-stranded RNA, extracted from stool samples without prior adaptation to cell culture, was used to synthesise cDNA using a self-annealing anchor primer ligated to dsRNA and random hexamers. The cDNA was subsequently sequenced using an Illumina MiSeq platform without prior genome amplification. All strains exhibited bovine-like artiodactyl genome constellations (G10/G6-P[11]/P[5]-I2-R2-C2-M2-A3/A11/A13-N2-T6-E2-H3). Phylogenetic analysis revealed relatively homogenous strains, which were mostly related to other South African animal strains or to each other. It appears that these study strains represent a specific bovine rotavirus population endemic to Southern Africa that was derived through multiple reassortment events. While one Mozambican strain, MPT307, was similar to the South African strains, the second strain, MPT93, was divergent from the other study strains, exhibiting evidence of interspecies transmission of the VP1 and NSP2 genes. The data presented in this study not only contribute to the knowledge of circulating African bovine rotavirus strains, but also emphasise the need for expanded surveillance of animal rotaviruses in African countries in order to improve our understanding of rotavirus strain diversity.Deutsche Forschungsgemeinschaft (DFG); European Foundation Initiative for African Research into Neglected Tropical Diseases (EFINTD); South African Medical Research Council (SAMRC); Australian National Health and Medical Research Council.http://www.mdpi.com/journal/pathogenspm2022Medical Virolog

    Whole Genome In-Silico Analysis of South African G1P[8] Rotavirus Strains before and after Vaccine Introduction over a Period of 14 Years

    Get PDF
    Rotavirus G1P[8] strains account for more than half of the group A rotavirus (RVA) infections in children under five years of age, globally. A total of 103 stool samples previously characterized as G1P[8] and collected seven years before and seven years after introducing the Rotarix® vaccine in South Africa were processed for whole-genome sequencing. All the strains analyzed had a Wa-like constellation (G1-P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1). South African pre- and post-vaccine G1 strains were clustered in G1 lineage-I and II while the majority (84.2%) of the P[8] strains were grouped in P[8] lineage-III. Several amino acid sites across ten gene segments with the exception of VP7 were under positive selective pressure. Except for the N147D substitution in the antigenic site of eight post-vaccine G1 strains when compared to both Rotarix® and pre-vaccine strains, most of the amino acid substitutions in the antigenic regions of post-vaccine G1P[8] strains were already present during the pre-vaccine period. Therefore, Rotarix® did not appear to have an impact on the amino acid differences in the antigenic regions of South African post-vaccine G1P[8] strains. However, continued whole-genome surveillance of RVA strains to decipher genetic changes in the post-vaccine period remains imperative

    Evolutionary changes between pre- and post- vaccine South African group A G2P[4] rotavirus strains, 2003-2017

    Get PDF
    The transient upsurge of G2P[4] group A rotavirus (RVA) after Rotarix vaccine introduction in several countries has been a matter of concern. To gain insight into the diversity and evolution of G2P[4] strains in South Africa pre- and post-RVA vaccination introduction, whole-genome sequencing was performed for RVA positive faecal specimens collected between 2003 and 2017 and samples previously sequenced were obtained from GenBank (n=103; 56 pre- and 47 post-vaccine). Pre-vaccine G2 sequences predominantly clustered within sub-lineage IVa-1. In contrast, post-vaccine G2 sequences clustered mainly within sub-lineage IVa-3, whereby a radical amino acid (AA) substitution, S15F, was observed between the two sub-lineages. Pre-vaccine P[4] sequences predominantly segregated within sub-lineage IVa while post-vaccine sequences clustered mostly within sub-lineage IVb, with a radical AA substitution R162G. Both S15F and R162G occurred outside recognised antigenic sites. The AA residue at position 15 is found within the signal sequence domain of Viral Protein 7 (VP7) involved in translocation of VP7 into endoplasmic reticulum during infection process. The 162 AA residue lies within the hemagglutination domain of Viral Protein 4 (VP4) engaged in interaction with sialic acid-containing structure during attachment to the target cell. Free energy change analysis on VP7 indicated accumulation of stable point mutations in both antigenic and non-antigenic regions. The segregation of South African G2P[4] strains into pre- and post-vaccination sub-lineages is likely due to erstwhile hypothesized stepwise lineage/sub-lineage evolution of G2P[4] strains rather than RVA vaccine introduction. Our findings reinforce the need for continuous whole-genome RVA surveillance and investigation of contribution of AA substitutions in understanding the dynamic G2P[4] epidemiology

    Aetiology and incidence of diarrhoea requiring hospitalisation in children under 5 years of age in 28 low-income and middle-income countries: findings from the Global Pediatric Diarrhea Surveillance network.

    Get PDF
    Introduction: Diarrhoea remains a leading cause of child morbidity and mortality. Systematically collected and analysed data on the aetiology of hospitalised diarrhoea in low-income and middle-income countries are needed to prioritise interventions. Methods: We established the Global Pediatric Diarrhea Surveillance network, in which children under 5 years hospitalised with diarrhoea were enrolled at 33 sentinel surveillance hospitals in 28 low-income and middle-income countries. Randomly selected stool specimens were tested by quantitative PCR for 16 causes of diarrhoea. We estimated pathogen-specific attributable burdens of diarrhoeal hospitalisations and deaths. We incorporated country-level incidence to estimate the number of pathogen-specific deaths on a global scale. Results: During 2017–2018, 29 502 diarrhoea hospitalisations were enrolled, of which 5465 were randomly selected and tested. Rotavirus was the leading cause of diarrhoea requiring hospitalisation (attributable fraction (AF) 33.3%; 95% CI 27.7 to 40.3), followed by Shigella (9.7%; 95% CI 7.7 to 11.6), norovirus (6.5%; 95% CI 5.4 to 7.6) and adenovirus 40/41 (5.5%; 95% CI 4.4 to 6.7). Rotavirus was the leading cause of hospitalised diarrhoea in all regions except the Americas, where the leading aetiologies were Shigella (19.2%; 95% CI 11.4 to 28.1) and norovirus (22.2%; 95% CI 17.5 to 27.9) in Central and South America, respectively. The proportion of hospitalisations attributable to rotavirus was approximately 50% lower in sites that had introduced rotavirus vaccine (AF 20.8%; 95% CI 18.0 to 24.1) compared with sites that had not (42.1%; 95% CI 33.2 to 53.4). Globally, we estimated 208 009 annual rotavirus-attributable deaths (95% CI 169 561 to 259 216), 62 853 Shigella-attributable deaths (95% CI 48 656 to 78 805), 36 922 adenovirus 40/41-attributable deaths (95% CI 28 469 to 46 672) and 35 914 norovirus-attributable deaths (95% CI 27 258 to 46 516). Conclusions: Despite the substantial impact of rotavirus vaccine introduction, rotavirus remained the leading cause of paediatric diarrhoea hospitalisations. Improving the efficacy and coverage of rotavirus vaccination and prioritising interventions against Shigella, norovirus and adenovirus could further reduce diarrhoea morbidity and mortality

    Abundance of Selected Lipopolysaccharide-Rich Bacteria and Levels of Toll-like Receptor 4 and Interleukin 8 Expression Are Significantly Associated with Live Attenuated Rotavirus Vaccine Shedding among South African Infants

    No full text
    Bacterial lipopolysaccharides (LPSs) have been shown to promote enteric viral infections. This study tested the hypothesis that elevated levels of bacterial LPS improve oral rotavirus vaccine replication in South African infants. Stool samples were collected from infants a week after rotavirus vaccination to identify vaccine virus shedders (n = 43) and non-shedders (n = 35). Quantitative real-time PCR was used to assay for selected LPS-rich bacteria, including Serratia marcescens, Pseudomonas aeruguinosa and Klebsiella pneumonia, and to measure the gene expression of bacterial LPS, host Toll-like Receptor 4 (TLR4) and Interleukin-8 (IL-8). The abundance of selected LPS-rich bacteria was significantly higher in vaccine shedders (median log 4.89 CFU/g, IQR 2.84) compared to non-shedders (median log 3.13 CFU/g, IQR 2.74), p = 0.006. The TLR4 and IL-8 gene expressions were increased four- and two-fold, respectively, in vaccine shedders versus non-shedders, but no difference was observed in the bacterial LPS expression, p = 0.09. A regression analysis indicated a significant association between the abundance of selected LPS-rich bacteria and vaccine virus shedding (Odds ratio 1.5, 95% CI = 1.10–1.89), p = 0.002. The findings suggest that harbouring higher counts of LPS-rich bacteria can increase the oral rotavirus vaccine take in infants

    Molecular characterization of group A rotaviruses in Mukuru slums Kenya: detection of novel strains circulating in children below 5 years of age

    No full text
    Abstract Background Gastroenteritis is a public health concern due to high morbidity and mortality among children. Rotaviruses are the leading etiological agents of severe gastroenteritis in children and accounts for more than half a million deaths per year in Africa. The study aimed at investigating the rotavirus genotypes that were circulating in children aged 5 years and below in and around Mukuru slums in Nairobi County Kenya. Methods A purposive cross sectional sampling method was applied where 166 samples were collected from children below 5 years of age and taken to Kenya Medical Research Institute virology laboratory. Presence of rotaviruses was determined using reverse transcription polymerase chain reaction, while extraction was done using ZR Soil/Fecal RNA MicroPrep™ extraction kit. This was followed by reverse transcription and genotyping using various group A rotavirus primers. Results The G type was successfully determined in 37 (92.5%), while the P type was successfully determined in 35 (87.5%) of the 40 (24%) page positive samples. Type G1 was the most predominant of the G types (40.5%), and the incidences of G3 and G9 were 21.6 and 32.4% respectively. Mixed types G3/G9 were detected at 5.4%. Three P types existed in Mukuru slums, P[8] (60%), P[6] (22.9%), P[4] (11.4) and their relative incidence varied over the 15 months of this study. Conclusions The G types and P types detected in this study are important causes of acute gastroenteritis in Mukuru slums Nairobi Kenya. An indication that the prevalence of certain genotypes may change over a rotavirus season is significant and mirrors observations from studies in other tropical climates. Thus monitoring of the genotypic changes among circulating viruses should be encouraged over the coming years

    Complete genome analyses of the first porcine rotavirus group H identified from a South African pig does not provide evidence for recent interspecies transmission events

    Get PDF
    Rotaviruses (RVs) are classified into eight species/groups (RVA-RVH) according to the migration patterns of their 11 genome segments, as well as by serological and molecular properties of Viral Protein 6 (VP6). In 1997 a new unclassified RV was reported infecting adults in Bangladesh and China. This virus was initially named novel adult diarrhoea rotavirus (ADRV-N), but later renamed as RVH. Since then, RVH has been detected in humans only very sporadically. However, RVH is increasingly being detected in pig populations in the USA, Brazil and Japan, but not yet in Africa. Unfortunately, whole genome sequence data of porcine RVH strains in GenBank is currently restricted to a single strain (SKA-1) from Japan. Porcine diarrhoeic samples were collected in South Africa and analysed for rotavirus using an RVA ELISA and electropherotyping by PAGE. One sample displayed a 4:2:1:1:1:1:1 migration pattern, typical for RVH. In order to further investigate this strain, sequence-independent amplification followed by random sequencing using the 454/Roche GS FLX Sequencer was performed, resulting in the second complete porcine RVH strain (MRC-DPRU1575) available in databases. Phylogenetically, all segments of MRC-DPRU1575 clustered closely with the SKA-1 strain and in some segments with known porcine RVH strains from Brazil and the USA. In contrast, the porcine RVH strains were only distantly related to human RVH strains from Asia and a partial RVH-like strain recently detected in bats from Cameroon. Overall, strain MRC-DPRU1575 is the first complete genome of a porcine RVH from Africa and allows for the development of improved RVH screening methods. Our analyses indicate that RVH strains cluster according to their host species, not suggesting any evidence of recent interspecies transmission events. However, more RVH genomes from a wider host range are needed to better understand their evolutionary pathways and zoonotic potential.publisher: Elsevier articletitle: Complete genome analyses of the first porcine rotavirus group H identified from a South African pig does not provide evidence for recent interspecies transmission events journaltitle: Infection, Genetics and Evolution articlelink: http://dx.doi.org/10.1016/j.meegid.2015.11.032 content_type: article copyright: Copyright © 2015 Elsevier B.V. All rights reserved.status: publishe
    corecore