18 research outputs found
Non-linear fate of internal wave attractors
We present a laboratory study on the instability of internal wave attractors
in a trapezoidal fluid domain filled with uniformly stratified fluid. Energy is
injected into the system via standing-wave-type motion of a vertical wall.
Attractors are found to be destroyed by parametric subharmonic instability
(PSI) via a triadic resonance which is shown to provide a very efficient energy
pathway from long to short length scales. This study provides an explanation
why attractors may be difficult or impossible to observe in natural systems
subject to large amplitude forcing
Attracteurs d'ondes internes: génération et instabilité
Dans le cas d'un domaine confiné, les réflexions successives des faisceaux d'ondes internes sur les limites rigides peuvent converger vers une trajectoire fermée : un attracteur d'ondes internes. Les trajectoires pour un domaine de forme arbitraire ne sont en général pas fermées et l'énergie injectée dans le domaine est répartie uniformément. Au contraire, quand un attracteur est présent, l'énergie est concentrée essentiellement sur les quelques faisceaux associés au cycle limite où on peut s'attendre au développement d'instabilités non-linéaires
Energy cascade in internal wave attractors
One of the pivotal questions in the dynamics of the oceans is related to the
cascade of mechanical energy in the abyss and its contribution to mixing. Here,
we propose internal wave attractors in the large amplitude regime as a unique
self-consistent experimental and numerical setup that models a cascade of
triadic interactions transferring energy from large-scale monochro-matic input
to multi-scale internal wave motion. We also provide signatures of a discrete
wave turbulence framework for internal waves. Finally, we show how beyond this
regime, we have a clear transition to a regime of small-scale high-vorticity
events which induce mixing. Introduction
Ondes et instabilités de fronts en milieu tournant et stratifié
Fronts occur in the Earth oceans and atmosphere and separate masses of air of fluid of different temperature and different velocities. Their instabilities are relevant to the transport of heat and energy in the oceans and atmosphere, and are therefore very relevant for climate modeling. In this study, a front is generated in the laboratory in a density stratified and differentially rotating fluid, and the corresponding flow is investigated numerically using DNS. In former studies of fronts, mainly the frontal instability has been discusses and baroclinic instability and newly found Rossby Kelvin instability were reported (Flor et al 2011, Scolan 2011, and Scolan et al 2013). The exact state of the interface is very relevant for the type of instability and waves we may expect. We therefore focus on the interfacial dynamics, and consider the diffusion of vorticity and density at an interface as a function of Rossby and Schmidt number. We note the existence of interfacial Ekman layers, observe Kelvin Helmholtz instability and discuss Hölmböe instability as well as other wave types near the interface
Liquid inertia versus bubble cloud buoyancy in circular plunging jet experiments
When a liquid jet plunges into a pool, it can generate a bubble-laden jet
flow underneath the surface. This common and simple phenomenon is investigated
experimentally for circular jets to illustrate and quantify the role played by
the net gas/liquid void fraction on the maximum bubble penetration depth. It is
first shown that an increase in either the impact diameter or the jet fall
height to diameter ratio at constant impact momentum leads to a reduction in
the bubble cloud size. By systematically measuring the local void fraction
using optical probes in the biphasic jet, it is then demonstrated that this
effect is a direct consequence of the increase in the air content within the
cloud. A simple momentum balance model, including only inertia and the buoyancy
force, is shown to predict the bubble cloud depth without any fitting
parameters. Finally, a Froude number based on the bubble terminal velocity, the
cloud depth, and also the net void fraction is introduced to propose a simple
criterion for the threshold between the inertia-dominated and
buoyancy-dominated regimes.Comment: As of 16th of November 2023, it is accepted for publication in JF
Finite-size effects in parametric subharmonic instability
The parametric subharmonic instability in stratified fluids depends on the frequency and the amplitude of the primary plane wave. In this paper, we present experimental and numerical results emphasizing that the finite width of the beam also plays an important role on this triadic instability. A new theoretical approach based on a simple energy balance is developed and compared to numerical and experimental results. Because of the finite width of the primary wave beam, the secondary pair of waves can leave the interaction zone which affects the transfer of energy. Experimental and numerical results are in good agreement with the prediction of this theory, which brings new insights on energy transfers in the ocean where internal waves with finite-width beams are dominant
A rotating annulus driven by localized convective forcing: a new atmosphere-like experiment
We present an experimental study of flows in a
cylindrical rotating annulus convectively forced by local heating
in an annular ring at the bottom near the external wall
and via a cooled circular disk near the axis at the top surface
of the annulus. This new configuration is distinct from
the classical thermally-driven annulus analogue of the atmosphere
circulation, in which thermal forcing is applied
uniformly on the sidewalls, but with a similar aim to investigate
the baroclinic instability of a rotating, stratified
flow subject to zonally symmetric forcing. Two vertically
and horizontally displaced heat sources/sinks are arranged
so that, in the absence of background rotation, statically unstable
Rayleigh-BĂ©nard convection would be induced above
the source and beneath the sink, thereby relaxing strong constraints
placed on background temperature gradients in previous
experimental configurations based on the conventional
rotating annulus. This better emulates local vigorous convection
in the tropics and polar regions of the atmosphere
whilst also allowing stably-stratified baroclinic motion in
the central zone of the annulus, as in midlatitude regions in
the Earth’s atmosphere. Regimes of flow are identified, depending
mainly upon control parameters that in turn depend
on rotation rate and the strength of differential heating. Several
regimes exhibit baroclinically unstable flows which are
qualitatively similar to those previously observed in the classical
thermally-driven annulus, However, in contrast to the
classical configuration, they typically exhibit more spatiotemporal
complexity. Thus, several regimes of flow demonstrate the equilibrated co-existence of, and interaction between,
free convection and baroclinic wave modes. These
new features were not previously observed in the classical
annulus and validate the new setup as a tool for exploring
fundamental atmosphere-like dynamics in a more realistic
framework. Thermal structure in the fluid is investigated and
found to be qualitatively consistent with previous numerical
results, with nearly isothermal conditions respectively above
and below the heat source and sink, and stably-stratified,
sloping isotherms in the near-adiabatic interior
Dynamique et stabilité de fronts : phénomènes agéostrophiques
This thesis has to be seen within the general study of atmospheric and oceanic fronts and the origin of gravity waves in the atmosphere. In this context we focus on a front in a rotating two-layer miscible fluid under vertical shear. Both experimental and numerical study highlights ageostrophic phenomena going beyond the usual geostrophic equilibrated configuration of a baroclinic front. First, the classification of different instability regimes of a front in an annular configuration as a fonction of Rossby number and Burger number reveals an ageostrophic instability coupling equilibrated and divergent motions due to a resonance between a Rossby wave and a Kelvin wave. This Rossby-Kelvin instability is confirmed numerically by the structure of the perturbation velocity fields in each layer. Second, small-scale structures have also been observed experimentally. Caracteristics of the interface in function of Richardson number and density and velocity interface thicknesses suggests the presence of the Hölmböe shear instability. A direct numerical simulation with an axisymmetric configuration and with a Schmidt number 700 confirms this conjecture. Other smalle-scale perturbations compatible with inertia-gravity waves have been observed numerically superimposed on an unstable Rossby-Kelvin front and the wave generation mechanism is discussed. In addition, a numerical study of a stable front highlighted the presenec of internal Ekman layers with an additional interfacial structure in the case of high Schmidt number and small Rossby number. For fronts in in/outcropping, front dynamics is modified by interaction with Ekman boundary layer at the location of the intersection zero-thickness singular point. It depends on both vertical circulation and mixing on the nose of the front and the various possible instabilities associated to horizontal or vertical wave resonances.Cette thèse s'inscrit dans un contexte d'étude de la dynamique des fronts atmosphériques et océaniques et de l'origine des ondes de gravité dans l'atmosphère. Pour cela on s'intéresse à un front composé de deux couches de fluides miscibles en milieu tournant et soumis à un cisaillement vertical. Un travail à la fois expérimental et numérique met en évidence des phénomènes agéostrophiques qui vont au-delà de la configuration équilibrée usuelle d'un front barocline. D'abord, l'étude des différents régimes instables d'un front en configuration annulaire en terme de nombre de Rossby et de Burger révèle une instabilité agéostrophique couplant des mouvements équilibrés et divergents grâce à la résonance entre une onde de Rossby et une onde de Kelvin. Cette instabilité Rossby-Kelvin a été confirmée numériquement grâce aux structures des perturbations en champs de vitesse dans chaque couche. Ensuite, des structures de petite échelle présentes sur le front ont aussi été observées expérimentalement. Les caractéristiques de l'interface en terme de nombre de Richardson et épaisseurs de l'interface en vitesse et en densité suggère une instabilité de cisaillement de Hölmböe. Une simulation directe numérique axisymmétrique avec un nombre de Schmidt valant 700 confirme cette conjecture. Des ondes inertie-gravité supplémentaires sont observées numériquement sur un mode instable Rossby-Kelvin et le mécanisme de génération de ces ondes est discuté. Enfin l'étude numérique d'un front stable a mis en évidence la présence de couches d'Ekman internes avec une structure additionnelle pour des valeurs élevées de nombre de Schmidt et un faible nombre de Rossby. Dans le cas de front en in/outcropping, la dynamique est modifiée par l'interaction du front avec les couches d'Ekman au niveau du point singulier d'épaisseur nulle. Elle dépend à la fois de la circulation verticale et du mélange sur le nez du front et des nombreuses instabilités possibles associées à des résonances d'ondes horizontalement et verticalement
Dynamics and stability of fronts : ageostrophic phenomena.
Cette thèse s'inscrit dans un contexte d'étude de la dynamique des fronts atmosphériques et océaniques et de l'origine des ondes de gravité dans l'atmosphère. Pour cela on s'intéresse à un front composé de deux couches de fluides miscibles en milieu tournant et soumis à un cisaillement vertical. Un travail à la fois expérimental et numérique met en évidence des phénomènes agéostrophiques qui vont au-delà de la configuration équilibrée usuelle d'un front barocline. D'abord, l'étude des différents régimes instables d'un front en configuration annulaire en terme de nombre de Rossby et de Burger révèle une instabilité agéostrophique couplant des mouvements équilibrés et divergents grâce à la résonance entre une onde de Rossby et une onde de Kelvin. Cette instabilité Rossby-Kelvin a été confirmée numériquement grâce aux structures des perturbations en champs de vitesse dans chaque couche. Ensuite, des structures de petite échelle présentes sur le front ont aussi été observées expérimentalement. Les caractéristiques de l'interface en terme de nombre de Richardson et épaisseurs de l'interface en vitesse et en densité suggère une instabilité de cisaillement de Hölmböe. Une simulation directe numérique axisymmétrique avec un nombre de Schmidt valant 700 confirme cette conjecture. Des ondes inertie-gravité supplémentaires sont observées numériquement sur un mode instable Rossby-Kelvin et le mécanisme de génération de ces ondes est discuté. Enfin l'étude numérique d'un front stable a mis en évidence la présence de couches d'Ekman internes avec une structure additionnelle pour des valeurs élevées de nombre de Schmidt et un faible nombre de Rossby. Dans le cas de front en in/outcropping, la dynamique est modifiée par l'interaction du front avec les couches d'Ekman au niveau du point singulier d'épaisseur nulle. Elle dépend à la fois de la circulation verticale et du mélange sur le nez du front et des nombreuses instabilités possibles associées à des résonances d'ondes horizontalement et verticalement.This thesis has to be seen within the general study of atmospheric and oceanic fronts and the origin of gravity waves in the atmosphere. In this context we focus on a front in a rotating two-layer miscible fluid under vertical shear. Both experimental and numerical study highlights ageostrophic phenomena going beyond the usual geostrophic equilibrated configuration of a baroclinic front. First, the classification of different instability regimes of a front in an annular configuration as a fonction of Rossby number and Burger number reveals an ageostrophic instability coupling equilibrated and divergent motions due to a resonance between a Rossby wave and a Kelvin wave. This Rossby-Kelvin instability is confirmed numerically by the structure of the perturbation velocity fields in each layer. Second, small-scale structures have also been observed experimentally. Caracteristics of the interface in function of Richardson number and density and velocity interface thicknesses suggests the presence of the Hölmböe shear instability. A direct numerical simulation with an axisymmetric configuration and with a Schmidt number 700 confirms this conjecture. Other smalle-scale perturbations compatible with inertia-gravity waves have been observed numerically superimposed on an unstable Rossby-Kelvin front and the wave generation mechanism is discussed. In addition, a numerical study of a stable front highlighted the presenec of internal Ekman layers with an additional interfacial structure in the case of high Schmidt number and small Rossby number. For fronts in in/outcropping, front dynamics is modified by interaction with Ekman boundary layer at the location of the intersection zero-thickness singular point. It depends on both vertical circulation and mixing on the nose of the front and the various possible instabilities associated to horizontal or vertical wave resonances
Recommended from our members