656 research outputs found

    CHANDRA Observations of X-ray Jet Structure on kpc to Mpc Scales

    Full text link
    With its exquisite spatial resolution of better than 0.5 arcsecond, the Chandra observatory is uniquely capable of resolving and studying the spatial structure of extragalactic X-ray jets on scales of a few to a few hundred kilo-parsec. Our analyses of four recent Chandra images of quasar jets interpret the X-ray emission as inverse Compton scattering of high energy electrons on the cosmic microwave background. We infer that these jets are in bulk relativistic motion, carrying kinetic powers upwards of 10^46 ergs/s to distances of hundreds of kpc, with very high efficiency.Comment: 4 pages, 3 figures, to be published in the proceedings of the Bologna jet workshop, "The Physics of Relativistic Jets in the CHANDRA and XMM Era.

    Re-localization due to finite response times in a nonlinear Anderson chain

    Full text link
    We study a disordered nonlinear Schr\"odinger equation with an additional relaxation process having a finite response time τ\tau. Without the relaxation term, τ=0\tau=0, this model has been widely studied in the past and numerical simulations showed subdiffusive spreading of initially localized excitations. However, recently Caetano et al.\ (EPJ. B \textbf{80}, 2011) found that by introducing a response time τ>0\tau > 0, spreading is suppressed and any initially localized excitation will remain localized. Here, we explain the lack of subdiffusive spreading for τ>0\tau>0 by numerically analyzing the energy evolution. We find that in the presence of a relaxation process the energy drifts towards the band edge, which enforces the population of fewer and fewer localized modes and hence leads to re-localization. The explanation presented here is based on previous findings by the authors et al.\ (PRE \textbf{80}, 2009) on the energy dependence of thermalized states.Comment: 3 pages, 4 figure

    The inverse moment problem for convex polytopes

    Full text link
    The goal of this paper is to present a general and novel approach for the reconstruction of any convex d-dimensional polytope P, from knowledge of its moments. In particular, we show that the vertices of an N-vertex polytope in R^d can be reconstructed from the knowledge of O(DN) axial moments (w.r.t. to an unknown polynomial measure od degree D) in d+1 distinct generic directions. Our approach is based on the collection of moment formulas due to Brion, Lawrence, Khovanskii-Pukhikov, and Barvinok that arise in the discrete geometry of polytopes, and what variously known as Prony's method, or Vandermonde factorization of finite rank Hankel matrices.Comment: LaTeX2e, 24 pages including 1 appendi

    Dynamical aspects of quantum entanglement for weakly coupled kicked tops

    Full text link
    We investigate how the dynamical production of quantum entanglement for weakly coupled, composite quantum systems is influenced by the chaotic dynamics of the corresponding classical system, using coupled kicked tops. The linear entropy for the subsystem (a kicked top) is employed as a measure of entanglement. A perturbative formula for the entanglement production rate is derived. The formula contains a correlation function that can be evaluated only from the information of uncoupled tops. Using this expression and the assumption that the correlation function decays exponentially which is plausible for chaotic tops, it is shown that {\it the increment of the strength of chaos does not enhance the production rate of entanglement} when the coupling is weak enough and the subsystems (kicked tops) are strongly chaotic. The result is confirmed by numerical experiments. The perturbative approach is also applied to a weakly chaotic region, where tori and chaotic sea coexist in the corresponding classical phase space, to reexamine a recent numerical study that suggests an intimate relationship between the linear stability of the corresponding classical trajectory and the entanglement production rate.Comment: 16 pages, 11 figures, submitted to Phys. Rev.

    Scattering of elastic waves by periodic arrays of spherical bodies

    Full text link
    We develop a formalism for the calculation of the frequency band structure of a phononic crystal consisting of non-overlapping elastic spheres, characterized by Lam\'e coefficients which may be complex and frequency dependent, arranged periodically in a host medium with different mass density and Lam\'e coefficients. We view the crystal as a sequence of planes of spheres, parallel to and having the two dimensional periodicity of a given crystallographic plane, and obtain the complex band structure of the infinite crystal associated with this plane. The method allows one to calculate, also, the transmission, reflection, and absorption coefficients for an elastic wave (longitudinal or transverse) incident, at any angle, on a slab of the crystal of finite thickness. We demonstrate the efficiency of the method by applying it to a specific example.Comment: 19 pages, 5 figures, Phys. Rev. B (in press

    Effect of alirocumab on major adverse cardiovascular events according to renal function in patients with a recent acute coronary syndrome: Prespecified analysis from the ODYSSEY OUTCOMES randomized clinical trial

    Full text link
    Aims Statins reduce cardiovascular risk in patients with acute coronary syndrome (ACS) and normal-to-moderately impaired renal function. It is not known whether proprotein convertase subtilisin-kexin type 9 (PCSK9) inhibitors provide similar benefit across a range of renal function. We determined whether effects of the PCSK9 inhibitor alirocumab to reduce cardiovascular events and death after ACS are influenced by renal function. ................................................................................................................................................................................................... Methods ODYSSEY OUTCOMES compared alirocumab with placebo in patients with recent ACS and dyslipidaemia despite and results intensive statin treatment. Estimated glomerular filtration rate (eGFR) <30 mL/min/1.73 m was exclusionary. In 18 918 patients, baseline eGFR was 82.8 ± 17.6 mL/min/1.73 m , and low-density lipoprotein cholesterol (LDL-C) was 92 ± 31 mg/dL. At 36 months, alirocumab decreased LDL-C by 48.5% vs. placebo but did not affect eGFR (P = 0.65). Overall, alirocumab reduced risk of the primary outcome (coronary heart disease death, non-fatal myocardial infarction, ischaemic stroke, or unstable angina requiring hospitalization) with fewer deaths. There was no interaction between continuous eGFR and treatment on the primary outcome or death (P = 0.14 and 0.59, respectively). Alirocumab reduced primary outcomes in patients with eGFR >_90 mL/min/1.73 m (n = 7470; hazard ratio 0.784, 95% confidence interval 0.670–0.919; P = 0.003) and 60 to <90 (n = 9326; 0.833, 0.731–0.949; P = 0.006), but not in those with eGFR < 60 (n = 2122; 0.974, 0.805–1.178; P = 0.784). Adverse events other than local injection-site reactions were similar in both groups across all categories of eGFR. ................................................................................................................................................................................................... Conclusions In patients with recent ACS, alirocumab was associated with fewer cardiovascular events and deaths across the range of renal function studied, with larger relative risk reductions in those with eGFR > 60 mL/min/1.73 m 2 2 2 2The trial was funded by Sanofi and Regeneron Pharmaceuticals, Inc

    Nonlinear Lattice Waves in Random Potentials

    Full text link
    Localization of waves by disorder is a fundamental physical problem encompassing a diverse spectrum of theoretical, experimental and numerical studies in the context of metal-insulator transition, quantum Hall effect, light propagation in photonic crystals, and dynamics of ultra-cold atoms in optical arrays. Large intensity light can induce nonlinear response, ultracold atomic gases can be tuned into an interacting regime, which leads again to nonlinear wave equations on a mean field level. The interplay between disorder and nonlinearity, their localizing and delocalizing effects is currently an intriguing and challenging issue in the field. We will discuss recent advances in the dynamics of nonlinear lattice waves in random potentials. In the absence of nonlinear terms in the wave equations, Anderson localization is leading to a halt of wave packet spreading. Nonlinearity couples localized eigenstates and, potentially, enables spreading and destruction of Anderson localization due to nonintegrability, chaos and decoherence. The spreading process is characterized by universal subdiffusive laws due to nonlinear diffusion. We review extensive computational studies for one- and two-dimensional systems with tunable nonlinearity power. We also briefly discuss extensions to other cases where the linear wave equation features localization: Aubry-Andre localization with quasiperiodic potentials, Wannier-Stark localization with dc fields, and dynamical localization in momentum space with kicked rotors.Comment: 45 pages, 19 figure

    Critical exponents and equation of state of the three-dimensional Heisenberg universality class

    Full text link
    We improve the theoretical estimates of the critical exponents for the three-dimensional Heisenberg universality class. We find gamma=1.3960(9), nu=0.7112(5), eta=0.0375(5), alpha=-0.1336(15), beta=0.3689(3), and delta=4.783(3). We consider an improved lattice phi^4 Hamiltonian with suppressed leading scaling corrections. Our results are obtained by combining Monte Carlo simulations based on finite-size scaling methods and high-temperature expansions. The critical exponents are computed from high-temperature expansions specialized to the phi^4 improved model. By the same technique we determine the coefficients of the small-magnetization expansion of the equation of state. This expansion is extended analytically by means of approximate parametric representations, obtaining the equation of state in the whole critical region. We also determine a number of universal amplitude ratios.Comment: 40 pages, final version. In publication in Phys. Rev.

    Transport properties of strongly correlated metals:a dynamical mean-field approach

    Get PDF
    The temperature dependence of the transport properties of the metallic phase of a frustrated Hubbard model on the hypercubic lattice at half-filling are calculated. Dynamical mean-field theory, which maps the Hubbard model onto a single impurity Anderson model that is solved self-consistently, and becomes exact in the limit of large dimensionality, is used. As the temperature increases there is a smooth crossover from coherent Fermi liquid excitations at low temperatures to incoherent excitations at high temperatures. This crossover leads to a non-monotonic temperature dependence for the resistance, thermopower, and Hall coefficient, unlike in conventional metals. The resistance smoothly increases from a quadratic temperature dependence at low temperatures to large values which can exceed the Mott-Ioffe-Regel value, hbar a/e^2 (where "a" is a lattice constant) associated with mean-free paths less than a lattice constant. Further signatures of the thermal destruction of quasiparticle excitations are a peak in the thermopower and the absence of a Drude peak in the optical conductivity. The results presented here are relevant to a wide range of strongly correlated metals, including transition metal oxides, strontium ruthenates, and organic metals.Comment: 19 pages, 9 eps figure
    corecore