370 research outputs found

    On the Reciprocally Causal and Constructive Nature of Developmental Plasticity and Robustness

    Get PDF
    Exposure to environmental variation is a characteristic feature of normal development, one that organisms can respond to during their lifetimes by actively adjusting or maintaining their phenotype in order to maximize fitness. Plasticity and robustness have historically been studied by evolutionary biologists through quantitative genetic and reaction norm approaches, while more recent efforts emerging from evolutionary developmental biology have begun to characterize the molecular and developmental genetic underpinnings of both plastic and robust trait formation. In this review, we explore how our growing mechanistic understanding of plasticity and robustness is beginning to force a revision of our perception of both phenomena, away from our conventional view of plasticity and robustness as opposites along a continuum and toward a framework that emphasizes their reciprocal, constructive, and integrative nature. We do so in three sections. Following an introduction, the first section looks inward and reviews the genetic, epigenetic, and developmental mechanisms that enable organisms to sense and respond to environmental conditions, maintaining and adjusting trait formation in the process. In the second section, we change perspective and look outward, exploring the ways in which organisms reciprocally shape their environments in ways that influence trait formation, and do so through the lens of behavioral plasticity, niche construction, and host–microbiota interactions. In the final section, we revisit established plasticity and robustness concepts in light of these findings, and highlight research opportunities to further advance our understanding of the causes, mechanisms, and consequences of these ubiquitous, and interrelated, phenomena

    Feedback cooling of a single trapped ion

    Full text link
    Based on a real-time measurement of the motion of a single ion in a Paul trap, we demonstrate its electro-mechanical cooling below the Doppler limit by homodyne feedback control (cold damping). The feedback cooling results are well described by a model based on a quantum mechanical Master Equation.Comment: 4 pages, 3 figure

    Low heritability in pharmacokinetics of talinolol: a pharmacogenetic twin study on the heritability of the pharmacokinetics of talinolol, a putative probe drug of MDR1 and other membrane transporters

    Get PDF
    Abstract Background Efflux transporters like MDR1 and MRP2 may modulate the pharmacokinetics of about 50 % of all drugs. It is currently unknown how much of the variation in the activities of important drug membrane transporters like MDR1 or MRP2 is determined by genetic or by environmental factors. In this study we assessed the heritability of the pharmacokinetics of talinolol as a putative probe drug for MDR1 and possibly other membrane transporters. Methods Talinolol pharmacokinetics were investigated in a repeated dose study in 42 monozygotic and 13 same-sex dizygotic twin pairs. The oral clearance of talinolol was predefined as the primary parameter. Heritability was analyzed by structural equation modeling and by within- and between-subject variance and talinolol clearance was correlated with polymorphisms in MDR1, MRP2, BCRP, MDR5, OATP1B1, and OCT1. Results Talinolol clearance varied approximately ninefold in the studied sample of healthy volunteers. The correlation of clearances between siblings was not significantly different for the monozygotic and dizygotic pairs. All data analyses consistently showed that variation of talinolol pharmacokinetics was mainly determined by environmental effects. Structural equation modeling attributed 53.5 % of the variation of oral clearance to common environmental effects influencing both siblings to the same extent and 46.5 % to unique environmental effects randomly affecting individual subjects. Talinolol pharmacokinetics were significantly dependent on sex, body mass index, total protein consumption, and vegetable consumption. Conclusions The twin study revealed that environmental factors explained much more of the variation in pharmacokinetics of talinolol than genetic factors. Trial registration European clinical trials database number: EUDRA-CT 2008-006223-31. Registered 26 September 2008. ClinicalTrials.gov number: NCT01845194

    Quantum Dynamics in Non-equilibrium Strongly Correlated Environments

    Full text link
    We consider a quantum point contact between two Luttinger liquids coupled to a mechanical system (oscillator). For non-vanishing bias, we find an effective oscillator temperature that depends on the Luttinger parameter. A generalized fluctuation-dissipation relation connects the decoherence and dissipation of the oscillator to the current-voltage characteristics of the device. Via a spectral representation, this result is generalized to arbitrary leads in a weak tunneling regime.Comment: 4 pages, 1 figur

    Evaluating predictive pharmacogenetic signatures of adverse events in colorectal cancer patients treated with fluoropyrimidines

    Get PDF
    The potential clinical utility of genetic markers associated with response to fluoropyrimidine treatment in colorectal cancer patients remains controversial despite extensive study. Our aim was to test the clinical validity of both novel and previously identified markers of adverse events in a broad clinical setting. We have conducted an observational pharmacogenetic study of early adverse events in a cohort study of 254 colorectal cancer patients treated with 5-fluorouracil or capecitabine. Sixteen variants of nine key folate (pharmacodynamic) and drug metabolising (pharmacokinetic) enzymes have been analysed as individual markers and/or signatures of markers. We found a significant association between TYMP S471L (rs11479) and early dose modifications and/or severe adverse events (adjusted OR = 2.02 [1.03; 4.00], p = 0.042, adjusted OR = 2.70 [1.23; 5.92], p = 0.01 respectively). There was also a significant association between these phenotypes and a signature of DPYD mutations (Adjusted OR = 3.96 [1.17; 13.33], p = 0.03, adjusted OR = 6.76 [1.99; 22.96], p = 0.002 respectively). We did not identify any significant associations between the individual candidate pharmacodynamic markers and toxicity. If a predictive test for early adverse events analysed the TYMP and DPYD variants as a signature, the sensitivity would be 45.5 %, with a positive predictive value of just 33.9 % and thus poor clinical validity. Most studies to date have been under-powered to consider multiple pharmacokinetic and pharmacodynamic variants simultaneously but this and similar individualised data sets could be pooled in meta-analyses to resolve uncertainties about the potential clinical utility of these markers

    Climate control on terrestrial biospheric carbon turnover

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Eglinton, T. I., Galy, V. V., Hemingway, J. D., Feng, X., Bao, H., Blattmann, T. M., Dickens, A. F., Gies, H., Giosan, L., Haghipour, N., Hou, P., Lupker, M., McIntyre, C. P., Montluçon, D. B., Peucker-Ehrenbrink, B., Ponton, C., Schefuß, E., Schwab, M. S., Voss, B. M., Wacker, L., Wu, Y., & Zhao, M. Climate control on terrestrial biospheric carbon turnover. Proceedings of the National Academy of Sciences of the United States of America, 118(8), (2021): e2011585118, htps://doi.org/ 10.1073/pnas.2011585118.Terrestrial vegetation and soils hold three times more carbon than the atmosphere. Much debate concerns how anthropogenic activity will perturb these surface reservoirs, potentially exacerbating ongoing changes to the climate system. Uncertainties specifically persist in extrapolating point-source observations to ecosystem-scale budgets and fluxes, which require consideration of vertical and lateral processes on multiple temporal and spatial scales. To explore controls on organic carbon (OC) turnover at the river basin scale, we present radiocarbon (14C) ages on two groups of molecular tracers of plant-derived carbon—leaf-wax lipids and lignin phenols—from a globally distributed suite of rivers. We find significant negative relationships between the 14C age of these biomarkers and mean annual temperature and precipitation. Moreover, riverine biospheric-carbon ages scale proportionally with basin-wide soil carbon turnover times and soil 14C ages, implicating OC cycling within soils as a primary control on exported biomarker ages and revealing a broad distribution of soil OC reactivities. The ubiquitous occurrence of a long-lived soil OC pool suggests soil OC is globally vulnerable to perturbations by future temperature and precipitation increase. Scaling of riverine biospheric-carbon ages with soil OC turnover shows the former can constrain the sensitivity of carbon dynamics to environmental controls on broad spatial scales. Extracting this information from fluvially dominated sedimentary sequences may inform past variations in soil OC turnover in response to anthropogenic and/or climate perturbations. In turn, monitoring riverine OC composition may help detect future climate-change–induced perturbations of soil OC turnover and stocks.This work was supported by grants from the US NSF (OCE-0928582 to T.I.E. and V.V.G.; OCE-0851015 to B.P.-E., T.I.E., and V.V.G.; and EAR-1226818 to B.P.-E.), Swiss National Science Foundation (200021_140850, 200020_163162, and 200020_184865 to T.I.E.), and National Natural Science Foundation of China (41520104009 to M.Z.)

    Variants at APOE influence risk of deep and lobar intracerebral hemorrhage

    Full text link
    Objective Prior studies investigating the association between APOE alleles ε2/ε4 and risk of intracerebral hemorrhage (ICH) have been inconsistent and limited to small sample sizes, and did not account for confounding by population stratification or determine which genetic risk model was best applied. Methods We performed a large-scale genetic association study of 2189 ICH cases and 4041 controls from 7 cohorts, which were analyzed using additive models for ε2 and ε4. Results were subsequently meta-analyzed using a random effects model. A proportion of the individuals (322 cases, 357 controls) had available genome-wide data to adjust for population stratification. Results Alleles ε2 and ε4 were associated with lobar ICH at genome-wide significance levels (odds ratio [OR] = 1.82, 95% confidence interval [CI] = 1.50–2.23, p = 6.6 × 10 −10 ; and OR = 2.20, 95%CI = 1.85–2.63, p = 2.4 × 10 −11 , respectively). Restriction of analysis to definite/probable cerebral amyloid angiopathy ICH uncovered a stronger effect. Allele ε4 was also associated with increased risk for deep ICH (OR = 1.21, 95% CI = 1.08–1.36, p = 2.6 × 10 −4 ). Risk prediction evaluation identified the additive model as best for describing the effect of APOE genotypes. Interpretation APOE ε2 and ε4 are independent risk factors for lobar ICH, consistent with their known associations with amyloid biology. In addition, we present preliminary findings on a novel association between APOE ε4 and deep ICH. Finally, we demonstrate that an additive model for these APOE variants is superior to other forms of genetic risk modeling previously applied. ANN NEUROL 2010Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/78478/1/22134_ftp.pd

    Enhanced axonal response of mitochondria to demyelination offers neuroprotection:implications for multiple sclerosis

    Get PDF
    Axonal loss is the key pathological substrate of neurological disability in demyelinating disorders, including multiple sclerosis (MS). However, the consequences of demyelination on neuronal and axonal biology are poorly understood. The abundance of mitochondria in demyelinated axons in MS raises the possibility that increased mitochondrial content serves as a compensatory response to demyelination. Here, we show that upon demyelination mitochondria move from the neuronal cell body to the demyelinated axon, increasing axonal mitochondrial content, which we term the axonal response of mitochondria to demyelination (ARMD). However, following demyelination axons degenerate before the homeostatic ARMD reaches its peak. Enhancement of ARMD, by targeting mitochondrial biogenesis and mitochondrial transport from the cell body to axon, protects acutely demyelinated axons from degeneration. To determine the relevance of ARMD to disease state, we examined MS autopsy tissue and found a positive correlation between mitochondrial content in demyelinated dorsal column axons and cytochrome c oxidase (complex IV) deficiency in dorsal root ganglia (DRG) neuronal cell bodies. We experimentally demyelinated DRG neuron-specific complex IV deficient mice, as established disease models do not recapitulate complex IV deficiency in neurons, and found that these mice are able to demonstrate ARMD, despite the mitochondrial perturbation. Enhancement of mitochondrial dynamics in complex IV deficient neurons protects the axon upon demyelination. Consequently, increased mobilisation of mitochondria from the neuronal cell body to the axon is a novel neuroprotective strategy for the vulnerable, acutely demyelinated axon. We propose that promoting ARMD is likely to be a crucial preceding step for implementing potential regenerative strategies for demyelinating disorders.</p

    Enhanced axonal response of mitochondria to demyelination offers neuroprotection:implications for multiple sclerosis

    Get PDF
    Axonal loss is the key pathological substrate of neurological disability in demyelinating disorders, including multiple sclerosis (MS). However, the consequences of demyelination on neuronal and axonal biology are poorly understood. The abundance of mitochondria in demyelinated axons in MS raises the possibility that increased mitochondrial content serves as a compensatory response to demyelination. Here, we show that upon demyelination mitochondria move from the neuronal cell body to the demyelinated axon, increasing axonal mitochondrial content, which we term the axonal response of mitochondria to demyelination (ARMD). However, following demyelination axons degenerate before the homeostatic ARMD reaches its peak. Enhancement of ARMD, by targeting mitochondrial biogenesis and mitochondrial transport from the cell body to axon, protects acutely demyelinated axons from degeneration. To determine the relevance of ARMD to disease state, we examined MS autopsy tissue and found a positive correlation between mitochondrial content in demyelinated dorsal column axons and cytochromecoxidase (complex IV) deficiency in dorsal root ganglia (DRG) neuronal cell bodies. We experimentally demyelinated DRG neuron-specific complex IV deficient mice, as established disease models do not recapitulate complex IV deficiency in neurons,and found that these mice are able to demonstrate ARMD, despite the mitochondrial perturbation.Enhancement of mitochondrial dynamics in complex IV deficient neurons protects the axon upon demyelination. Consequently, increased mobilisation of mitochondria from the neuronal cell body to the axon is a novel neuroprotective strategy for the vulnerable, acutely demyelinated axon. We propose that promoting ARMD is likely to be a crucial preceding step for implementing potential regenerative strategies for demyelinating disorders.</p
    • …
    corecore