47 research outputs found

    Dr. Dietrich Heidecke zum 65. Geburtstag

    Get PDF
    Selten ist ein Biologe seiner Heimat Sachsen-Anhalt so treu geblieben wie Dietrich Heidecke. Am 4. Juni 1945 in Köthen (Anhalt) geboren, wurde bereits in seinem Elternhaus durch die Nutria- und Nerzzucht seines Vaters der Grundstein für die spätere Beschäftigung mit semiaquatischen Säugetieren gelegt. Von 1970 bis 1984 arbeitete er als wissenschaftlicher Assistent an der Biologischen Station Steckby des Instituts für Landschaftsforschung und Naturschutz (ILN). Hier galt sein Interesse vor allem dem Schutz und der Erforschung vom Aussterben bedrohter Wirbeltierarten. Praktisch vor seiner Haustür wohnten die letzten Elbebiber, die ab sofort Gegenstand seiner wissenschaftlichen Arbeit wurden. Die Ergebnisse dieser Arbeit bildeten die Grundlage für seine Dissertation zum Thema „Untersuchungen zur Ökologie und Populationsentwicklung des Elbebibers, Castor fiber albicus, Matschie 1907“. Den (Elbe)Bibern ist Dietrich Heidecke bis heute treu geblieben. Dank seiner Initiative ist die Bestandsentwicklung des Elbebibers im heutigen Sachsen-Anhalt seit 1970 lückenlos dokumentiert. Der Biberschutz lebte und lebt ganz wesentlich von seinem Engagement. Nun wurde Dietrich Heidecke in den Ruhestand verabschiedet, der (wer ihn kennt, weiß es) zu einem Unruhestand werden kann. So hat er sich schon längere Zeit um die Organisation der Bearbeitung einer Säugetierfauna des Landes Sachsen-Anhalt verdient gemacht und möchte diese Arbeit jetzt fortsetzen. Die große Anerkennung seiner Arbeit beschreibt wohl am besten die Meinung seiner Studenten: „Herr Heidecke ist toll“. Dem können sich die vielen ehrenamtlichen Naturschützer, die er im Laufe der Jahre begeisterte, nur anschließen. Alles Gute, Herr Dr. Heidecke

    In memoriam Dr. Dietrich Heidecke

    Get PDF
    Zum Gedenken an Dr. Dietrich Heidecke. Plötzlich und für alle noch unfassbar verstarb am 24.10.2011 der ehemalige Kustos der Zoologischen Sammlungen der Martin-Luther-Universität Halle-Wittenberg und international bekannte Biberforscher Dr. Dietrich Heidecke

    Habitatbindung und Erhaltungszustand des Heldbocks im Roßlauer Oberluch : Ergebnisse einer Habitatmodellierung

    Get PDF
    Der Heldbock, Cerambyx cerdo Linnaeus 1758, ist ein Baum bewohnender Bockkäfer, der sich vorwiegend an Stieleichen und selten an Traubeneichen entwickelt und mit 30-56 mm Länge zu den größten heimischen Käferarten gehört. Die Art avancierte im Zuge ihrer Unterschutzstellung 1992 zu einer sog. „Flaggschiffart“ des Naturschutzes. Es wird vermutet, dass der Heldbock durch seine Fraßtätigkeit in den Eichen Nischen für viele andere holzbewohnende Tierarten schafft, also als eine Art „Ökosystemgestalter“ zu bezeichnen ist. Cerambyx cerdo gilt europaweit als gefährdet und in Deutschland sowie Sachsen-Anhalt als vom Aussterben bedroht. In Europa ist die Art weit verbreitet, wobei sie in großen Teilen Mitteleuropas nur noch sehr lokal in reliktären Alteichenbeständen vorkommt. In Deutschland stellen die Auenwaldgebiete im Biosphärenreservat Mittelelbe einen Verbreitungsschwerpunkt dar

    Trait means, trait plasticity and trait differences to other species jointly explain species performances in grasslands of varying diversity

    Full text link
    Functional traits may help to explain the great variety of species performances in plant communities, but it is not clear whether the magnitude of trait values of a focal species or trait differences to co‐occurring species are key for trait‐based predictions. In addition, trait expression within species is often plastic, but this variation has been widely neglected in trait‐based analyses. We studied functional traits and plant biomass of 59 species in 66 experimental grassland mixtures of varying species richness (Jena Experiment). We related mean species performances (species biomass and relative yield RY) and their plasticities along the diversity gradient to trait‐based pedictors involving mean species traits (Tmean), trait plasticities along the diversity gradient (Tslope), extents of trait variation across communities (TCV; coefficient of variation) and hierarchical differences (Tdiff) and trait distances (absolute values of trait differences Tdist) between focal and co‐occurring species. Tmean (30–55%) and Tdiff (30–33%) explained most variation in mean species performances and their plasticities, but Tslope (20–25%) was also important in explaining mean species performances. The mean species traits and the trait differences between focal species and neighbors with the greatest explanatory power were related to plant size and stature (shoot length, mass:height ratios) and leaf photosynthetic capacity (specific leaf area, stable carbon isotopes and leaf nitrogen concentration). The contribution of trait plasticities in explaining species performances varied in direction (positive or negative) and involved traits related to photosynthetic capacity, nitrogen acquisition (nitrogen concentrations and stable isotopes) as well as structural stability (shoot carbon concentrations). Our results suggest that incorporating plasticity in trait expression as well as trait differences to co‐occurring species is critical for extending trait‐based analyses to understand the assembly of plant communities and the contribution of individual species in structuring plant communities

    Origin context of trait data matters for predictions of community performance in a grassland biodiversity experiment

    Full text link
    Plant functional traits may explain the positive relationship between species richness and ecosystem functioning, but species‐level trait variation in response to growth conditions is often ignored in trait‐based predictions of community performance. In a large grassland biodiversity experiment (Jena Experiment), we measured traits on plants grown as solitary individuals, in monocultures or in mixtures. We calculated two measures of community‐level trait composition, i.e., community‐weighted mean traits (CWM) and trait diversity (Rao's quadratic entropy; FD) based on different contexts in which traits were measured (trait origins). CWM and FD values of the different measurement origins were then compared regarding their power to predict community biomass production and biodiversity effects quantified with the additive partitioning method. Irrespective of trait origin, models combining CWM and FD values as predictors best explained community biomass and biodiversity effects. CWM values based on monoculture, mixture‐mean or community‐specific trait data were similarly powerful predictors, but predictions became worse when trait values originated from solitary‐grown individuals. FD values based on monoculture traits were the best predictors of community biomass and net biodiversity effects, while FD values based on community‐specific traits were the best predictors for complementarity and selection effects. Traits chosen as best CWM predictors were not strongly affected by trait origin but traits chosen as best FD predictors varied strongly dependent on trait origin and altered the predictability of community performance. We conclude that by adjusting their functional traits to species richness and even specific community compositions, plants can change community‐level trait compositions, thereby also changing community biomass production and biodiversity effects. Incorporation of these plastic trait adjustments of plants in trait‐based ecology can improve its predictive power in explaining biodiversity–ecosystem functioning relationships

    Using Plant Functional Traits to Explain Diversity–Productivity Relationships

    Get PDF
    Background: The different hypotheses proposed to explain positive species richness–productivity relationships, i.e. selection effect and complementarity effect, imply that plant functional characteristics are at the core of a mechanistic understanding of biodiversity effects. Methodology/Principal Findings: We used two community-wide measures of plant functional composition, (1) community- weighted means of trait values (CWM) and (2) functional trait diversity based on Rao’s quadratic diversity (FDQ) to predict biomass production and measures of biodiversity effects in experimental grasslands (Jena Experiment) with different species richness (2, 4, 8, 16 and 60) and different functional group number and composition (1 to 4; legumes, grasses, small herbs, tall herbs) four years after establishment. Functional trait composition had a larger predictive power for community biomass and measures of biodiversitity effects (40–82% of explained variation) than species richness per se (,1–13% of explained variation). CWM explained a larger amount of variation in community biomass (80%) and net biodiversity effects (70%) than FDQ (36 and 38% of explained variation respectively). FDQ explained similar proportions of variation in complementarity effects (24%, positive relationship) and selection effects (28%, negative relationship) as CWM (27% of explained variation for both complementarity and selection effects), but for all response variables the combination of CWM and FDQ led to significant model improvement compared to a separate consideration of different components of functional trait composition. Effects of FDQ were mainly attributable to diversity in nutrient acquisition and life-history strategies. The large spectrum of traits contributing to positive effects of CWM on biomass production and net biodiversity effects indicated that effects of dominant species were associated with different trait combinations. Conclusions/Significance: Our results suggest that the identification of relevant traits and the relative impacts of functional identity of dominant species and functional diversity are essential for a mechanistic understanding of the role of plant diversity for ecosystem processes such as aboveground biomass production

    Density-Independent Mortality and Increasing Plant Diversity Are Associated with Differentiation of Taraxacum officinale into r- and K-Strategists

    Get PDF
    Background: Differential selection between clones of apomictic species may result in ecological differentiation without mutation and recombination, thus offering a simple system to study adaptation and life-history evolution in plants. Methodology/Principal Findings: We caused density-independent mortality by weeding to colonizer populations of the largely apomictic Taraxacum officinale (Asteraceae) over a 5-year period in a grassland biodiversity experiment (Jena Experiment). We compared the offspring of colonizer populations with resident populations deliberately sown into similar communities. Plants raised from cuttings and seeds of colonizer and resident populations were grown under uniform conditions. Offspring from colonizer populations had higher reproductive output, which was in general agreement with predictions of r-selection theory. Offspring from resident populations had higher root and leaf biomass, fewer flower heads and higher individual seed mass as predicted under K-selection. Plants grown from cuttings and seeds differed to some degree in the strength, but not in the direction, of their response to the r- vs. K-selection regime. More diverse communities appeared to exert stronger K-selection on resident populations in plants grown from cuttings, while we did not find significant effects of increasing species richness on plants grown from seeds. Conclusions/Significance: Differentiation into r- and K-strategists suggests that clones with characteristics of r-strategists were selected in regularly weeded plots through rapid colonization, while increasing plant diversity favoured the selection of clones with characteristics of K-strategists in resident populations. Our results show that different selection pressures may result in a rapid genetic differentiation within a largely apomictic species. Even under the assumption that colonizer and resident populations, respectively, happened to be r- vs. K-selected already at the start of the experiment, our results still indicate that the association of these strategies with the corresponding selection regimes was maintained during the 5-year experimental period
    corecore