396 research outputs found

    The NAAAA and the NCAA: Methods of Placing Legislation on the Agenda of NCAA Conventions

    Get PDF
    The authors reviewed the NCAA governance structure and process by which legislation is added to a NCAA agenda to vote. It included how legislation can be authored or sponsored by N4A

    Novel pathogenic variants in filamin C identified in pediatric restrictive cardiomyopathy

    Get PDF
    Restrictive cardiomyopathy (RCM) is a rare and distinct form of cardiomyopathy characterized by normal ventricular chamber dimensions, normal myocardial wall thickness, and preserved systolic function. The abnormal myocardium, however, demonstrates impaired relaxation. To date, dominant variants causing RCM have been reported in a small number of sarcomeric or cytoskeletal genes, but the genetic causes in a majority of cases remain unexplained, especially in early childhood. Here, we describe two RCM families with childhood onset: one in a large family with a history of autosomal dominant RCM and the other a family with affected monozygotic, dichorionic/diamniotic twins. Exome sequencing found a pathogenic filamin C (FLNC) variant in each: p.Pro2298Leu, which segregates with disease in the large autosomal dominant RCM family, and p.Tyr2563Cys in both affected twins. In vitro expression of both mutant proteins yielded aggregates of FLNC containing actin in C2C12 myoblast cells. Recently, a number of variants in FLNC have been described that cause hypertrophic, dilated, and restrictive cardiomyopathies. Our data presented here provide further evidence for the role of FLNC in pediatric RCM, and suggest the need to include FLNC in genetic testing of cardiomyopathy patients including those with early ages of onset

    Clinically relevant variants identified in thoracic aortic aneurysm patients by research exome sequencing

    Get PDF
    Thoracic aortic aneurysm (TAA) is a genetically heterogeneous disease involving subclinical and progressive dilation of the thoracic aorta, which can lead to life-threatening complications such as dissection or rupture. Genetic testing is important for risk stratification and identification of at risk family members, and clinically available genetic testing panels have been expanding rapidly. However, when past testing results are normal, there is little evidence to guide decision-making about the indications and timing to pursue additional clinical genetic testing. Results from research based genetic testing can help inform this process. Here we present 10 TAA patients who have a family history of disease and who enrolled in research-based exome testing. Nine of these ten patients had previous clinical genetic testing that did not identify the cause of disease. We sought to determine the number of rare variants in 23 known TAA associated genes identified by research-based exome testing. In total, we found 10 rare variants in six patients. Likely pathogenic variants included a TGFB2 variant in one patient and a SMAD3 variant in another. These variants have been reported previously in individuals with similar phenotypes. Variants of uncertain significance of particular interest included novel variants in MYLK and MFAP5, which were identified in a third patient. In total, clinically reportable rare variants were found in 6/10 (60%) patients, with at least 2/10 (20%) patients having likely pathogenic variants identified. These data indicate that consideration of re-testing is important in TAA patients with previous negative or inconclusive results

    The electrification of energy: long-term trends and opportunities

    Get PDF
    We present and analyze three powerful long-term historical trends in the electrification of energy by free-fuel sources. These trends point toward a future in which energy is affordable, abundant, and efficiently deployed; with major economic, geo-political, and environmental benefits to humanity.We present and analyze three powerful long-term historical trends in energy, particularly electrical energy, as well as the opportunities and challenges associated with these trends. The first trend is from a world containing a diversity of energy currencies to one whose predominant currency is electricity, driven by electricity’s transportability, exchangeability, and steadily decreasing cost. The second trend is from electricity generated from a diversity of sources to electricity generated predominantly by free-fuel sources, driven by their steadily decreasing cost and long-term abundance. These trends necessitate a just-emerging third trend: from a grid in which electricity is transported unidirectionally, traded at near-static prices, and consumed under direct human control; to a grid in which electricity is transported bidirectionally, traded at dynamic prices, and consumed under human-tailored artificial agential control. These trends point toward a future in which energy is not costly, scarce, or inefficiently deployed but instead is affordable, abundant, and efficiently deployed; with major economic, geo-political, and environmental benefits to humanity

    Human antibodies neutralizing diphtheria toxin in vitro and in vivo

    Get PDF
    Diphtheria is an infectious disease caused by Corynebacterium diphtheriae. The bacterium primarily infects the throat and upper airways and the produced diphtheria toxin (DT), which binds to the elongation factor 2 and blocks protein synthesis, can spread through the bloodstream and affect organs, such as the heart and kidneys. For more than 125 years, the therapy against diphtheria has been based on polyclonal horse sera directed against DT (diphtheria antitoxin; DAT). Animal sera have many disadvantages including serum sickness, batch-to-batch variation in quality and the use of animals for production. In this work, 400 human recombinant antibodies were generated against DT from two different phage display panning strategies using a human immune library. A panning in microtiter plates resulted in 22 unique in vitro neutralizing antibodies and a panning in solution combined with a functional neutralization screening resulted in 268 in vitro neutralizing antibodies. 61 unique antibodies were further characterized as scFv-Fc with 35 produced as fully human IgG1. The best in vitro neutralizing antibody showed an estimated relative potency of 454 IU/mg and minimal effective dose 50% (MED50%) of 3.0 pM at a constant amount of DT (4x minimal cytopathic dose) in the IgG format. The targeted domains of the 35 antibodies were analyzed by immunoblot and by epitope mapping using phage display. All three DT domains (enzymatic domain, translocation domain and receptor binding domain) are targets for neutralizing antibodies. When toxin neutralization assays were performed at higher toxin dose levels, the neutralizing capacity of individual antibodies was markedly reduced but this was largely compensated for by using two or more antibodies in combination, resulting in a potency of 79.4 IU/mg in the in vivo intradermal challenge assay. These recombinant antibody combinations are candidates for further clinical and regulatory development to replace equine DAT

    Exome Sequencing Identifies Candidate Genetic Modifiers of Syndromic and Familial Thoracic Aortic Aneurysm Severity

    Get PDF
    Thoracic aortic aneurysm (TAA) is a genetic disease predisposing to aortic dissection. It is important to identify the genetic modifiers controlling penetrance and expressivity to improve clinical prognostication. Exome sequencing was performed in 27 subjects with syndromic or familial TAA presenting with extreme phenotypes (15 with severe TAA; 12 with mild or absent TAA). Family-based analysis of a subset of the cohort identified variants, genes, and pathways segregating with TAA severity among three families. A rare missense variant in ADCK4 (p.Arg63Trp) segregated with mild TAA in each family. Genes and pathways identified in families were further investigated in the entire cohort using the optimal unified sequence kernel association test, finding significance for the gene COL15A1 (p = 0.025) and the retina homeostasis pathway (p = 0.035). Thus, we identified candidate genetic modifiers of TAA severity by exome-based study of extreme phenotypes, which may lead to improved risk stratification and development of new medical therapies

    Climate Change and Indiana’s Energy Sector: A Report from the Indiana Climate Change Impacts Assessment

    Get PDF
    Indiana’s climate and its manufacturing-heavy economy make it a prime user of energy. In fact, Indiana is the ninth-most energy intensive state per capita in the country. Nearly three-quarters of Indiana’s electricity comes from coal, and 5 percent is generated by renewable sources, though the wind energy sector is growing and coal use is declining. This energy mix makes the Hoosier State the eighth-largest emitter of climate-changing gases, at 183 million metric tons of carbon dioxide (CO2) emitted per year. As global and local climates continue to shift, it is important to know how Indiana’s future energy profile will be affected and what those changes mean for Hoosier families and businesses. This report from the Indiana Climate Change Impacts Assessment (IN CCIA) looks at projected changes to Indiana’s residential and commercial energy demands as the state warms, and to Indiana’s energy supply over the coming century

    Development and validation of a multi-level air freight handling safety climate scale

    Get PDF
    Safety is of critical importance in many industries. One of the more dangerous environments in industry, and the military, is air freight handling, where the fatal injury rate has consistently been higher than the national average. Nonetheless, peer-reviewed safety research that is focused on air freight handling is practically non-existent. Therefore, research that helps academicians and managers better understand safety climate and its potential influence on employee attitudes and behaviors is vitally important. To address these concerns, we develop and validate an air freight handling-specific safety climate scale capable of capturing employees’ safety climate perceptions at the organization and group levels. We also found that, in general, measurement scale dimensions in this context are like those in other high-risk, transportation-related contexts, and that the nomological network may be converging on a cross-context set of safety climate dimensions. The resultant scale can be used to investigate safety climate’s relationship with various employee attitudes, safety and operational behaviors in this high-risk environment

    Aeolian features on Venus: Preliminary Magellan results

    Get PDF
    Magellan synthetic aperture radar data reveal numerous surface features that are attributed to aeolian, or wind processes. Wind streaks are the most common aeolian feature. They consist of radar backscatter patterns that are high, low, or mixed in relation to the surface on which they occur. A data base of more than 3400 wind streaks shows that low backscatter linear forms (long, narrow streaks) are the most common and that most streaks occur between 17°S to 30°S and 5°N to 53°N on smooth plains. Moreover, most streaks are associated with deposits from certain impact craters and some tectonically deformed terrains. We infer that both of these geological settings provide fine particulate material that can be entrained by the low-velocity winds on Venus. Turbulence and wind patterns generated by the topographic features with which many streaks are associated can account for differences in particle distributions and in the patterns of the wind streaks. Thus, some high backscatter streaks are considered to be zones that are swept free of sedimentary particles to expose rough bedrock; other high backscatter streaks may be lag deposits of dense materials from which low-density grains have been removed (dense materials such as ilmenite or pyrite have dielectric properties that would produce high backscatter patterns). Wind streaks generally occur on slopes < 2° and tend to be oriented toward the equator, consistent with the Hadley model of atmospheric circulation. In addition to wind streaks, other aeolian features on Venus include yardangs(?) and dune fields. The Aglaonice dune field, centered at 25°S, 340°E, covers ∼1290 km^2 and is located in an ejecta flow channel from the Aglaonice impact crater. The Meshkenet dune field, located at 67°N, 90°E, covers ∼17,120 km^2 in a valley between Ishtar Terra and Meshkenet Tessera. Wind streaks associated with both dune fields suggest that the dunes are of transverse forms in which the dune crests are perpendicular to the prevailing winds. Dunes on Venus signal the presence of sand-size (∼60 to 2,000 μm) grains. The possible yardangs are found at 9°N, 60.5°E, about 300 km southeast of the crater Mead. Although most aeolian features are concentrated in smooth plains near the equator, the occurrence of wind streaks is widespread, and some have been found at all latitudes and elevations. They demonstrate that aeolian processes operate widely on Venus. The intensity of wind erosion and deposits, however, varies with locality and is dependent on the wind regime and supply of particles
    • …
    corecore