251 research outputs found

    From bone to breast and back - the bone cytokine RANKL and breast cancer

    Get PDF
    Receptor activator of nuclear factor-κB ligand (RANKL) plays a pivotal role in regulating bone homeostasis. Osteoporosis and malignant bone disease secondary to breast cancer are characterized by enhanced RANKL production and increased bone turnover. Thus, denosumab, a monoclonal antibody to RANKL, has been developed and is now approved for various bone loss conditions. Recent results indicate that RANKL may also promote the development and osseous migration of breast cancer

    A coding variant of ANO10, affecting volume regulation of macrophages, is associated with Borrelia seropositivity

    Get PDF
    In a first genome-wide association study (GWAS) approach to anti-Borrelia seropositivity, we identified two significant single nucleotide polymorphisms (SNPs) (rs17850869, P = 4.17E-09; rs41289586, P = 7.18E-08). Both markers, located on chromosomes 16 and 3, respectively, are within or close to genes previously connected to spinocerebellar ataxia. The risk SNP rs41289586 represents a missense variant (R263H) of anoctamin 10 (ANO10), a member of a protein family encoding Cl(−) channels and phospholipid scram-blases. ANO10 augments volume-regulated Cl(−) currents (I(Hypo)) in Xenopus oocytes, HEK293 cells, lymphocytes and macrophages and controls volume regulation by enhancing regulatory volume decrease (RVD). ANO10 supports migration of macrophages and phagocytosis of spirochetes. The R263H variant is inhibitory on I(Hypo), RVD and intracellular Ca(2+) signals, which may delay spirochete clearance, thereby sensitizing adaptive immunity. Our data demonstrate for the first time that ANO10 has a central role in innate immune defense against Borrelia infection

    Aberrant regulation of RANKL/OPG in women at high risk of developing breast cancer

    Get PDF
    Breast cancer is the most common female cancer, affecting approximately one in eight women during their lifetime in North America and Europe. Receptor Activator of NF-kB Ligand (RANKL), its receptor RANK and the natural antagonist osteoprotegerin (OPG) are essential regulators of bone resorption. We have initially shown that RANKL/RANK are essential for hormone-driven mammary epithelial proliferation in pregnancy and RANKL/RANK have been implicated in mammary stem cell biology. Using genetic mouse-models, we and others identified the RANKL/RANK system as a key regulator of sex hormone, BRCA1-mutation, and oncogene-driven breast cancer and we proposed that RANKL/RANK might be involved in the initiation of breast tumors. We now report that in postmenopausal women without known genetic predisposition, high RANKL and progesterone serum levels stratify a subpopulation of women at high risk of developing breast cancer 12-24 months before diagnosis (5.33-fold risk, 95%CI 1.5-25.4; P=0.02). In women with established breast cancer, we demonstrate that RANKL/OPG ratios change dependent on the presence of circulating tumor cells (CTCs). Finally, we show in a prospective human breast cancer cohort that alterations in RANKL/OPG ratios are significantly associated with breast cancer manifestation. These data indicate that the RANKL/RANK/OPG system is deregulated in post-menopausal women at high risk for breast cancer and in women with circulating tumor cells. Thus, serum levels of RANKL/OPG are potentially indicative of predisposition and progression of breast cancer in humans. Advancement of our findings towards clinical application awaits prior validation in independent patient cohorts

    NF-κB, stem cells and breast cancer: the links get stronger

    Get PDF
    Self-renewing breast cancer stem cells are key actors in perpetuating tumour existence and in treatment resistance and relapse. The molecular pathways required for their maintenance are starting to be elucidated. Among them is the transcription factor NF-κB, which is known to play critical roles in cell survival, inflammation and immunity. Recent studies indicate that mammary epithelial NF-κB regulates the self-renewal of breast cancer stem cells in a model of Her2-dependent tumourigenesis. We will describe here the NF-κB-activating pathways that are involved in this process and in which progenitor cells this transcription factor is actually activated

    Association Analysis of IL-17A and IL-17F Polymorphisms in Chinese Han Women with Breast Cancer

    Get PDF
    Background: Research into the etiology of breast cancer has recently focused on the role of the immunity and inflammation. The proinflammatory cytokines IL-17A and IL-17F can mediate inflammation and cancer. To evaluate the influences of IL-17A and IL-17F gene polymorphisms on the risk of sporadic breast cancer, a case-control study was conducted in Chinese Han women. Methodology and Principal Findings: We genotyped three single-nucleotide polymorphisms (SNPs) in IL-17A (rs2275913, rs3819025 and rs3748067) and five SNPs in IL-17F (rs7771511, rs9382084, rs12203582, rs1266828 and rs763780) to determine the haplotypes in 491 women with breast cancer and 502 healthy individuals. The genotypes were determined using the SNaPshot technique. The differences in the genotypic distribution between breast cancer patients and healthy controls were analyzed with the Chi-square test for trends. For rs2275913 in IL-17A, the frequency of the AA genotype was higher in patients than controls (P = 0.0016). The clinical features analysis demonstrated significant associations between IL-17 SNPs and tumor protein 53 (P53), progesterone receptor (PR), human epidermal growth factor receptor 2 (Her-2) and triple-negative (ER-/PR-/Her-2-) status. In addition, the haplotype analysis indicated that the frequency of the haplotype A rs2275913G rs3819025G rs3748067, located in the IL-17A linkage disequilibrium (LD) block, was higher in patients than in controls (P = 0.0471 after correction for multiple testing)

    Amphiregulin Mediates Estrogen, Progesterone, and EGFR Signaling in the Normal Rat Mammary Gland and in Hormone-Dependent Rat Mammary Cancers

    Get PDF
    Both estrogen (E) and progesterone (P) are implicated in the etiology of human breast cancer. Defining their mechanisms of action, particularly in vivo, is relevant to the prevention and therapy of breast cancer. We investigated the molecular and cellular mechanisms of E and/or P-induced in vivo proliferation, in the normal rat mammary gland and in hormone-dependent rat mammary cancers which share many characteristics with the normal human breast and hormone-dependent breast cancers. We show that E+P treatment induced significantly greater proliferation in both the normal gland and mammary cancers compared to E alone. In both the normal gland and tumors, E+P-induced proliferation was mediated through the increased production of amphiregulin (Areg), an epidermal growth factor receptor (EGFR) ligand, and the activation of intracellular signaling pathways (Erk, Akt, JNK) downstream of EGFR that regulate proliferation. In vitro experiments using rat primary mammary organoids or T47D breast cancer cells confirmed that Areg and the synthetic progestin, R5020, synergize to promote cell proliferation through EGFR signaling. Iressa, an EGFR inhibitor, effectively blocked this proliferation. These results indicate that mediators of cross talk between E, P, and EGFR pathways may be considered as relevant molecular targets for the therapy of hormone-dependent breast cancers, especially in premenopausal women

    Disruption of STAT3 signaling promotes KRAS induced lung tumorigenesis

    Get PDF
    STAT3 is considered to play an oncogenic role in several malignancies including lung cancer; consequently, targeting STAT3 is currently proposed as therapeutic intervention. Here we demonstrate that STAT3 plays an unexpected tumour-suppressive role in KRAS mutant lung adenocarcinoma (AC). Indeed, lung tissue-specific inactivation of Stat3 in mice results in increased KrasG12D-driven AC initiation and malignant progression leading to markedly reduced survival. Knockdown of STAT3 in xenografted human AC cells increases tumour growth. Clinically, low STAT3 expression levels correlate with poor survival and advanced malignancy in human lung AC patients with smoking history, which are prone to KRAS mutations. Consistently, KRAS mutant lung tumours exhibit reduced STAT3 levels. Mechanistically, we demonstrate that STAT3 controls NF-B-induced IL-8 expression by sequestering NF-B within the cytoplasm, thereby inhibiting IL-8-mediated myeloid tumour infiltration and tumour vascularization and hence tumour progression. These results elucidate a novel STAT3NF-BIL-8 axis in KRAS mutant AC with therapeutic and prognostic relevance.P 25599(VLID)183891
    • …
    corecore