506 research outputs found

    Summer Precipitation Predicts Spatial Distributions of Semiaquatic Mammals

    Get PDF
    Citation: Ahlers, A. A., Cotner, L. A., Wolff, P. J., Mitchell, M. A., Heske, E. J., & Schooley, R. L. (2015). Summer Precipitation Predicts Spatial Distributions of Semiaquatic Mammals. Plos One, 10(8), 14. doi:10.1371/journal.pone.0135036Climate change is predicted to increase the frequency of droughts and intensity of seasonal precipitation in many regions. Semiaquatic mammals should be vulnerable to this increased variability in precipitation, especially in human-modified landscapes where dispersal to suitable habitat or temporary refugia may be limited. Using six years of presence-absence data (2007-2012) spanning years of record-breaking drought and flood conditions, we evaluated regional occupancy dynamics of American mink (Neovison vison) and muskrats (Ondatra zibethicus) in a highly altered agroecosystem in Illinois, USA. We used noninvasive sign surveys and a multiseason occupancy modeling approach to estimate annual occupancy rates for both species and related these rates to summer precipitation. We also tracked radiomarked individuals to assess mortality risk for both species when moving in terrestrial areas. Annual model-averaged estimates of occupancy for mink and muskrat were correlated positively to summer precipitation. Mink and muskrats were widespread during a year (2008) with above-average precipitation. However, estimates of site occupancy declined substantially for mink (0.56) and especially muskrats (0.09) during the severe drought of 2012. Mink are generalist predators that probably use terrestrial habitat during droughts. However, mink had substantially greater risk of mortality away from streams. In comparison, muskrats are more restricted to aquatic habitats and likely suffered high mortality during the drought. Our patterns are striking, but a more mechanistic understanding is needed of how semiaquatic species in human-modified ecosystems will respond ecologically in situ to extreme weather events predicted by climate-change models

    Transcriptomic and metabolite analyses of Cabernet Sauvignon grape berry development

    Get PDF
    BACKGROUND: Grape berry development is a dynamic process that involves a complex series of molecular genetic and biochemical changes divided into three major phases. During initial berry growth (Phase I), berry size increases along a sigmoidal growth curve due to cell division and subsequent cell expansion, and organic acids (mainly malate and tartrate), tannins, and hydroxycinnamates accumulate to peak levels. The second major phase (Phase II) is defined as a lag phase in which cell expansion ceases and sugars begin to accumulate. Véraison (the onset of ripening) marks the beginning of the third major phase (Phase III) in which berries undergo a second period of sigmoidal growth due to additional mesocarp cell expansion, accumulation of anthocyanin pigments for berry color, accumulation of volatile compounds for aroma, softening, peak accumulation of sugars (mainly glucose and fructose), and a decline in organic acid accumulation. In order to understand the transcriptional network responsible for controlling berry development, mRNA expression profiling was conducted on berries of V. vinifera Cabernet Sauvignon using the Affymetrix GeneChip® Vitis oligonucleotide microarray ver. 1.0 spanning seven stages of berry development from small pea size berries (E-L stages 31 to 33 as defined by the modified E-L system), through véraison (E-L stages 34 and 35), to mature berries (E-L stages 36 and 38). Selected metabolites were profiled in parallel with mRNA expression profiling to understand the effect of transcriptional regulatory processes on specific metabolite production that ultimately influence the organoleptic properties of wine. RESULTS: Over the course of berry development whole fruit tissues were found to express an average of 74.5% of probes represented on the Vitis microarray, which has 14,470 Unigenes. Approximately 60% of the expressed transcripts were differentially expressed between at least two out of the seven stages of berry development (28% of transcripts, 4,151 Unigenes, had pronounced (≥2 fold) differences in mRNA expression) illustrating the dynamic nature of the developmental process. The subset of 4,151 Unigenes was split into twenty well-correlated expression profiles. Expression profile patterns included those with declining or increasing mRNA expression over the course of berry development as well as transient peak or trough patterns across various developmental stages as defined by the modified E-L system. These detailed surveys revealed the expression patterns for genes that play key functional roles in phytohormone biosynthesis and response, calcium sequestration, transport and signaling, cell wall metabolism mediating expansion, ripening, and softening, flavonoid metabolism and transport, organic and amino acid metabolism, hexose sugar and triose phosphate metabolism and transport, starch metabolism, photosynthesis, circadian cycles and pathogen resistance. In particular, mRNA expression patterns of transcription factors, abscisic acid (ABA) biosynthesis, and calcium signaling genes identified candidate factors likely to participate in the progression of key developmental events such as véraison and potential candidate genes associated with such processes as auxin partitioning within berry cells, aroma compound production, and pathway regulation and sequestration of flavonoid compounds. Finally, analysis of sugar metabolism gene expression patterns indicated the existence of an alternative pathway for glucose and triose phosphate production that is invoked from véraison to mature berries. CONCLUSION: These results reveal the first high-resolution picture of the transcriptome dynamics that occur during seven stages of grape berry development. This work also establishes an extensive catalog of gene expression patterns for future investigations aimed at the dissection of the transcriptional regulatory hierarchies that govern berry development in a widely grown cultivar of wine grape. More importantly, this analysis identified a set of previously unknown genes potentially involved in critical steps associated with fruit development that can now be subjected to functional testing.National Science Foundation Plant Genome Project (DBI-0217653); Bioinformatics program (DBI-0136561); National Institute of Health Biomedical Research Infrastructure Network (NIH-NCRR P20 RR16464; National Institute of Health IDeA Network of Biomedical Research Excellence (INBRE, RR-03-008); Nevada Agricultural Experimental Statio

    ARP2/3- and resection-coupled genome reorganization facilitates translocations [preprint]

    Get PDF
    DNA end-resection and nuclear actin-based movements orchestrate clustering of double-strand breaks (DSBs) into homology-directed repair (HDR) domains. Here, we analyze how actin nucleation by ARP2/3 affects damage-dependent and -independent 3D genome reorganization and facilitates pathologic repair. We observe that DNA damage, followed by ARP2/3-dependent establishment of repair domains enhances local chromatin insulation at a set of damage-proximal boundaries and affects compartment organization genome-wide. Nuclear actin polymerization also promotes interactions between DSBs, which in turn facilitates aberrant intra- and inter-chromosomal rearrangements. Notably, BRCA1 deficiency, which decreases end-resection, DSB mobility, and subsequent HDR, nearly abrogates recurrent translocations between AsiSI DSBs. In contrast, loss of functional BRCA1 yields unique translocations genome-wide, reflecting a critical role in preventing spontaneous genome instability and subsequent rearrangements. Our work establishes that the assembly of DSB repair domains is coordinated with multiscale alterations in genome architecture that enable HDR despite increased risk of translocations with pathologic potential

    Factors Associated With Viral Rebound in HIV-1-Infected Individuals Enrolled in a Therapeutic HIV-1 \u3ci\u3egag\u3c/i\u3e Vaccine Trial

    Get PDF
    Background. Human immunodeficiency virus type 1 (HIV-1) vaccines directed to the cell-mediated immune system could have a role in lowering the plasma HIV-1 RNA set point, which may reduce infectivity and delay disease progression. Methods. Randomized, placebo-controlled trial involving HIV-1-infected participants who received a recombinant adenovirus serotype 5 (rAd5) HIV-1 gag vaccine or placebo. Sequence-based HLA typing was performed for all 110 participants who initiated analytic treatment interruption (ATI) to assess the role of HLA types previously associated with HIV prognosis. Plasma HIV-1 gag and pol RNA sequences were obtained during the ATI. Virologic endpoints and HLA groups were compared between treatment arms using the 2-sample rank sum test. A linear regression model was fitted to derive independent correlates of ATI week 16 plasma viral load (w16 PVL). Results. Vaccinated participants with neutral HLA alleles had lower median w16 PVLs than did vaccinated participants with protective HLA alleles (P 5 .01) or placebo participants with neutral HLA alleles (P 5 .02). Factors independently associated with lower w16 PVL included lower pre-antiretroviral therapy PVL, greater Gag sequence divergence from the vaccine sequence, decreased proportion of HLA-associated polymorphisms in Gag, and randomization to the vaccine arm. Conclusions. Therapeutic vaccination with a rAd5-HIV gag vaccine was associated with lower ATI week 16 PVL even after controlling for viral and host genetic factors

    Factors Associated With Viral Rebound in HIV-1-Infected Individuals Enrolled in a Therapeutic HIV-1 \u3ci\u3egag\u3c/i\u3e Vaccine Trial

    Get PDF
    Background. Human immunodeficiency virus type 1 (HIV-1) vaccines directed to the cell-mediated immune system could have a role in lowering the plasma HIV-1 RNA set point, which may reduce infectivity and delay disease progression. Methods. Randomized, placebo-controlled trial involving HIV-1-infected participants who received a recombinant adenovirus serotype 5 (rAd5) HIV-1 gag vaccine or placebo. Sequence-based HLA typing was performed for all 110 participants who initiated analytic treatment interruption (ATI) to assess the role of HLA types previously associated with HIV prognosis. Plasma HIV-1 gag and pol RNA sequences were obtained during the ATI. Virologic endpoints and HLA groups were compared between treatment arms using the 2-sample rank sum test. A linear regression model was fitted to derive independent correlates of ATI week 16 plasma viral load (w16 PVL). Results. Vaccinated participants with neutral HLA alleles had lower median w16 PVLs than did vaccinated participants with protective HLA alleles (P 5 .01) or placebo participants with neutral HLA alleles (P 5 .02). Factors independently associated with lower w16 PVL included lower pre-antiretroviral therapy PVL, greater Gag sequence divergence from the vaccine sequence, decreased proportion of HLA-associated polymorphisms in Gag, and randomization to the vaccine arm. Conclusions. Therapeutic vaccination with a rAd5-HIV gag vaccine was associated with lower ATI week 16 PVL even after controlling for viral and host genetic factors

    Towards an understanding of hole superconductivity

    Full text link
    From the very beginning K. Alex M\"uller emphasized that the materials he and George Bednorz discovered in 1986 were holehole superconductors. Here I would like to share with him and others what I believe to be thethe key reason for why high TcT_c cuprates as well as all other superconductors are hole superconductors, which I only came to understand a few months ago. This paper is dedicated to Alex M\"uller on the occasion of his 90th birthday.Comment: Dedicated to Alex M\"uller on the Occasion of his 90th Birthday. arXiv admin note: text overlap with arXiv:1703.0977

    Characteristics and Outcomes of Initial Virologic Suppressors during Analytic Treatment Interruption in a Therapeutic HIV-1 gag Vaccine Trial

    Get PDF
    Background: In the placebo-controlled trial ACTG A5197, a trend favoring viral suppression was seen in the HIV-1-infected subjects who received a recombinant Ad5 HIV-1 gaggag vaccine. Objective: To identify individuals with initial viral suppression (plasma HIV-1 RNA set point <3.0 log10log_{10} copies/ml) during the analytic treatment interruption (ATI) and evaluate the durability and correlates of virologic control and characteristics of HIV sequence evolution. Methods: HIV-1 gaggag and polpol RNA were amplified and sequenced from plasma obtained during the ATI. Immune responses were measured by flow cytometric analysis and intracellular cytokine expression assays. Characteristics of those with and without initial viral suppression were compared using the Wilcoxon rank sum and Fisher's exact tests. Results: Eleven out of 104 participants (10.6%) were classified as initial virologic suppressors, nine of whom had received the vaccine. Initial virologic suppressors had significantly less CD4+ cell decline by ATI week 16 as compared to non-suppressors (median 7 CD4+ cell gain vs. 247 CD4+ cell loss, P = 0.04). However, of the ten initial virologic suppressors with a pVL at ATI week 49, only three maintained pVL <3.0 log10 copies/ml. HIV-1 Gag-specific CD4+ interferon-γ responses were not associated with initial virologic suppression and no evidence of vaccine-driven HIV sequence evolution was detected. Participants with initial virologic suppression were found to have a lower percentage of CD4+ CTLA-4+ cells prior to treatment interruption, but a greater proportion of HIV-1 Gag-reactive CD4+ TNF-α+ cells expressing either CTLA-4 or PD-1. Conclusions: Among individuals participating in a rAd5 therapeutic HIV-1 gaggag vaccine trial, initial viral suppression was found in a subset of patients, but this response was not sustained. The association between CTLA-4 and PD-1 expression on CD4+ T cells and virologic outcome warrants further study in trials of other therapeutic vaccines in development. Trial Registration: ClinicalTrials.gov NCT0008010

    Positive Interactions between Desert Granivores: Localized Facilitation of Harvester Ants by Kangaroo Rats

    Get PDF
    Facilitation, when one species enhances the environment or performance of another species, can be highly localized in space. While facilitation in plant communities has been intensely studied, the role of facilitation in shaping animal communities is less well understood. In the Chihuahuan Desert, both kangaroo rats and harvester ants depend on the abundant seeds of annual plants. Kangaroo rats, however, are hypothesized to facilitate harvester ants through soil disturbance and selective seed predation rather than competing with them. I used a spatially explicit approach to examine whether a positive or negative interaction exists between banner-tailed kangaroo rat (Dipodomys spectabilis) mounds and rough harvester ant (Pogonomyrmex rugosus) colonies. The presence of a scale-dependent interaction between mounds and colonies was tested by comparing fitted spatial point process models with and without interspecific effects. Also, the effect of proximity to a mound on colony mortality and spatial patterns of surviving colonies was examined. The spatial pattern of kangaroo rat mounds and harvester ant colonies was consistent with a positive interspecific interaction at small scales (<10 m). Mortality risk of vulnerable, recently founded harvester ant colonies was lower when located close to a kangaroo rat mound and proximity to a mound partly predicted the spatial pattern of surviving colonies. My findings support localized facilitation of harvester ants by kangaroo rats, likely mediated through ecosystem engineering and foraging effects on plant cover and composition. The scale-dependent effect of kangaroo rats on abiotic and biotic factors appears to result in greater founding and survivorship of young colonies near mounds. These results suggest that soil disturbance and foraging by rodents can have subtle impacts on the distribution and demography of other species
    • …
    corecore