68 research outputs found
Genome-wide methylation patterns in Marfan syndrome
Item does not contain fulltex
Aortic distensibility in Marfan syndrome:a potential predictor of aortic events?
Contains fulltext :
239962.pdf (Publisher’s version ) (Open Access
Myocardial perfusion scintigraphy before and after cardioversion for atrial fibrillation: Recovery of quantitative parameters
Cardiovascular Aspects of Radiolog
Recommended from our members
Coronary atherosclerosis scoring with semiquantitative CCTA risk scores for prediction of major adverse cardiac events: Propensity score-based analysis of diabetic and non-diabetic patients.
AIMS:We aimed to compare semiquantitative coronary computed tomography angiography (CCTA) risk scores - which score presence, extent, composition, stenosis and/or location of coronary artery disease (CAD) - and their prognostic value between patients with and without diabetes mellitus (DM). Risk scores derived from general chest-pain populations are often challenging to apply in DM patients, because of numerous confounders. METHODS:Out of a combined cohort from the Leiden University Medical Center and the CONFIRM registry with 5-year follow-up data, we performed a secondary analysis in diabetic patients with suspected CAD who were clinically referred for CCTA. A total of 732 DM patients was 1:1 propensity-matched with 732 non-DM patients by age, sex and cardiovascular risk factors. A subset of 7 semiquantitative CCTA risk scores was compared between groups: 1) any stenosis ≥50%, 2) any stenosis ≥70%, 3) stenosis-severity component of the coronary artery disease-reporting and data system (CAD-RADS), 4) segment involvement score (SIS), 5) segment stenosis score (SSS), 6) CT-adapted Leaman score (CT-LeSc), and 7) Leiden CCTA risk score. Cox-regression analysis was performed to assess the association between the scores and the primary endpoint of all-cause death and non-fatal myocardial infarction. Also, area under the receiver-operating characteristics curves were compared to evaluate discriminatory ability. RESULTS:A total of 1,464 DM and non-DM patients (mean age 58 ± 12 years, 40% women) underwent CCTA and 155 (11%) events were documented after median follow-up of 5.1 years. In DM patients, the 7 semiquantitative CCTA risk scores were significantly more prevalent or higher as compared to non-DM patients (p ≤ 0.022). All scores were independently associated with the primary endpoint in both patients with and without DM (p ≤ 0.020), with non-significant interaction between the scores and diabetes (interaction p ≥ 0.109). Discriminatory ability of the Leiden CCTA risk score in DM patients was significantly better than any stenosis ≥50% and ≥70% (p = 0.003 and p = 0.007, respectively), but comparable to the CAD-RADS, SIS, SSS and CT-LeSc that also focus on the extent of CAD (p ≥ 0.265). CONCLUSION:Coronary atherosclerosis scoring with semiquantitative CCTA risk scores incorporating the total extent of CAD discriminate major adverse cardiac events well, and might be useful for risk stratification of patients with DM beyond the binary evaluation of obstructive stenosis alone
Diagnosis of obstructive coronary artery disease using computed tomography angiography in patients with stable chest pain depending on clinical probability and in clinically important subgroups: meta-analysis of individual patient data
OBJECTIVE:
To determine whether coronary computed tomography angiography (CTA) should be performed in patients with any clinical probability of coronary artery disease (CAD), and whether the diagnostic performance differs between subgroups of patients.
DESIGN:
Prospectively designed meta-analysis of individual patient data from prospective diagnostic accuracy studies.
DATA SOURCES:
Medline, Embase, and Web of Science for published studies. Unpublished studies were identified via direct contact with participating investigators.
ELIGIBILITY CRITERIA FOR SELECTING STUDIES:
Prospective diagnostic accuracy studies that compared coronary CTA with coronary angiography as the reference standard, using at least a 50% diameter reduction as a cutoff value for obstructive CAD. All patients needed to have a clinical indication for coronary angiography due to suspected CAD, and both tests had to be performed in all patients. Results had to be provided using 2×2 or 3×2 cross tabulations for the comparison of CTA with coronary angiography. Primary outcomes were the positive and negative predictive values of CTA as a function of clinical pretest probability of obstructive CAD, analysed by a generalised linear mixed model; calculations were performed including and excluding non-diagnostic CTA results. The no-treat/treat threshold model was used to determine the range of appropriate pretest probabilities for CTA. The threshold model was based on obtained post-test probabilities of less than 15% in case of negative CTA and above 50% in case of positive CTA. Sex, angina pectoris type, age, and number of computed tomography detector rows were used as clinical variables to analyse the diagnostic performance in relevant subgroups.
RESULTS:
Individual patient data from 5332 patients from 65 prospective diagnostic accuracy studies were retrieved. For a pretest probability range of 7-67%, the treat threshold of more than 50% and the no-treat threshold of less than 15% post-test probability were obtained using CTA. At a pretest probability of 7%, the positive predictive value of CTA was 50.9% (95% confidence interval 43.3% to 57.7%) and the negative predictive value of CTA was 97.8% (96.4% to 98.7%); corresponding values at a pretest probability of 67% were 82.7% (78.3% to 86.2%) and 85.0% (80.2% to 88.9%), respectively. The overall sensitivity of CTA was 95.2% (92.6% to 96.9%) and the specificity was 79.2% (74.9% to 82.9%). CTA using more than 64 detector rows was associated with a higher empirical sensitivity than CTA using up to 64 rows (93.4% v 86.5%, P=0.002) and specificity (84.4% v 72.6%, P<0.001). The area under the receiver-operating-characteristic curve for CTA was 0.897 (0.889 to 0.906), and the diagnostic performance of CTA was slightly lower in women than in with men (area under the curve 0.874 (0.858 to 0.890) v 0.907 (0.897 to 0.916), P<0.001). The diagnostic performance of CTA was slightly lower in patients older than 75 (0.864 (0.834 to 0.894), P=0.018 v all other age groups) and was not significantly influenced by angina pectoris type (typical angina 0.895 (0.873 to 0.917), atypical angina 0.898 (0.884 to 0.913), non-anginal chest pain 0.884 (0.870 to 0.899), other chest discomfort 0.915 (0.897 to 0.934)).
CONCLUSIONS:
In a no-treat/treat threshold model, the diagnosis of obstructive CAD using coronary CTA in patients with stable chest pain was most accurate when the clinical pretest probability was between 7% and 67%. Performance of CTA was not influenced by the angina pectoris type and was slightly higher in men and lower in older patients.
SYSTEMATIC REVIEW REGISTRATION:
PROSPERO CRD42012002780
Cardiac 123 I-MIBG Parameters at 4 Hours Derived from Earlier Acquisitions Times
Abstract Background: The clinical implementation of cardiac 123 Iodine-meta-iodobenzylguanidine ( 123 I-MIBG) scintigra
Acute Coronary Syndrome Subphenotypes Based on Repeated Biomarker Measurements in Relation to Long-Term Mortality Risk
BACKGROUND: We aimed to identify patients with subphenotypes of postacute coronary syndrome (ACS) using repeated measurements of high-sensitivity cardiac troponin T, N-terminal pro-B-type natriuretic peptide, high-sensitivity C-reactive protein, and growth differentiation factor 15 in the year after the index admission, and to investigate their association with long-term mortality risk. METHODS AND RESULTS: BIOMArCS (BIOMarker Study to Identify the Acute Risk of a Coronary Syndrome) was an observational study of patients with ACS, who underwent high-frequency blood sampling for 1 year. Biomarkers were measured in a median of 16 repeated samples per individual. Cluster analysis was performed to identify biomarker-based subphenotypes in 723 patients without a repeat ACS in the first year. Patients with a repeat ACS (N=36) were considered a separate cluster. Differences in all-cause death were evaluated using accelerated failure time models (median follow-up, 9.1 years; 141 deaths). Three biomarker-based clusters were identified: cluster 1 showed low and stable biomarker concentrations, cluster 2 had elevated concentrations that subsequently decreased, and cluster 3 showed persistently elevated concentrations. The temporal biomarker patterns of patients in cluster 3 were similar to those with a repeat ACS during the first year. Clusters 1 and 2 had a similar and favorable long-term mortality risk. Cluster 3 had the highest mortality risk. The adjusted survival time ratio was 0.64 (95% CI, 0.44-0.93; P=0.018) compared with cluster 1, and 0.71 (95% CI, 0.39-1.32; P=0.281) compared with patients with a repeat ACS. CONCLUSIONS: Patients with subphenotypes of post-ACS with different all-cause mortality risks during long-term follow-up can be identified on the basis of repeatedly measured cardiovascular biomarkers. Patients with persistently elevated biomarkers have the worst outcomes, regardless of whether they experienced a repeat ACS in the first year
- …