336 research outputs found
Measurements of Gamma-Ray Bursts (GRBs) with Glast
One of the scientific goals of the main instrument of GLAST is the study of
Gamma-Ray Bursts (GRBs) in the energy range from ~20 MeV to ~300 GeV. In order
to extend the energy measurement towards lower energies a secondary instrument,
the GLAST Burst Monitor (GBM), will measure GRBs from ~10 keV to ~25 MeV and
will therefore allow the investigation of the relation between the keV and the
MeV-GeV emission from GRBs over six energy decades. These unprecedented
measurements will permit the exploration of the unknown aspects of the
high-energy burst emission and the investigation of their connection with the
well-studied low-energy emission. They will also provide ne insights into the
physics of GRBs in general. In addition the excellent localization of GRBs by
the LAT will stimulate follow-up observations at other wavelengths which may
yield clues about the nature of the burst sources.Comment: 6 pages, 2 figures, to be published in Baltic Astronomy - Proceedings
of the minisymposium "Physics of Gamma-Ray Bursts", JENAM Conference, August
29-30, 2003, Budapes
COMPTEL Observations of AGN at MeV-Energies
The COMPTEL experiment aboard CGRO, exploring the previously unknown sky at
MeV-energies, has so far detected 10 Active Galactic Nuclei (AGN): 9 blazars
and the radio galaxy Centaurus A. No Seyfert galaxy has been found yet. With
these results COMPTEL has opened the field of extragalactic Gamma-ray astronomy
in the MeV-band.Comment: 4 pages, 2 figures including 1 color plot, to appear in the
Proceedings of the 3rd INTEGRAL Workshop "The Extreme Universe", held in
Taormina, Italy, 14-18 September 199
COMPTEL observations of the quasar PKS 0528+134 during the first 3.5 years of the CGRO mission
The COMPTEL observations of the blazar-type quasar PKS 0528+134 in the energy
range 0.75 MeV to 30 MeV carried out between April 1991 and September 1994 have
been analyzed. During the first two years PKS 0528+134 was most significantly
detected at energies above 3 MeV. During the last year there is only evidence
for the quasar at energies below 3 MeV indicating a spectral change. The
time-averaged COMPTEL energy spectrum between 0.75 MeV and 30 MeV is well
represented by a power-law shape. Spectra collected from different
observational periods reveal different power-law shapes: a hard state during
flaring observations reported by EGRET, and a soft state otherwise. The
combined simultaneous EGRET and COMPTEL spectra indicate these two spectral
states as well. During low intensisty gamma-ray phases no spectral break is
obvious from the combined COMPTEL and EGRET measurements. For the gamma-ray
flaring phases however, the combined COMPTEL and EGRET data require a spectral
bending at MeV-energies. By fitting broken power-law functions the best-fit
values for the break in photon index range between 0.6 and 1.7, and for the
break energy between ~5 MeV and ~20 MeV. Because the flux values measured by
COMPTEL below 3 MeV in both states are roughly equal, the observations would be
consistent with an additional spectral component showing up during gamma-ray
flaring phases of PKS 0528+134. Such a component could be introduced by e.g. a
high-energy electron-positron population with a low-energy cutoff in their bulk
Lorentz factor distribution. The multiwavelength spectrum of PKS 0528+134 for
gamma-ray flaring phases shows that the major energy release across the entire
electro-magnetic spectrum is measured at MeV-energies.Comment: 10 pages, 8 postscript figures, latex, to appear in: A&A 328, 33
(1997
INTEGRAL-RXTE observations of Cygnus X-1
We present first results from contemporaneous observations of Cygnus X-1 with
INTEGRAL and RXTE, made during INTEGRAL's performance verification phase in
2002 November and December. Consistent with earlier results, the 3-250 keV data
are well described by Comptonization spectra from a Compton corona with a
temperature of kT~50-90 keV and an optical depth of tau~1.0-1.3 plus reflection
from a cold or mildly ionized slab with a covering factor of Omega/2pi~0.2-0.3.
A soft excess below 10 keV, interpreted as emission from the accretion disk, is
seen to decrease during the 1.5 months spanned by our observations. Our results
indicate a remarkable consistency among the independently calibrated detectors,
with the remaining issues being mainly related to the flux calibration of
INTEGRAL.Comment: 6 pages, 3 figures. Figs. 2 and 3 are best viewed in color. Accepted
for publication in the INTEGRAL special edition of A&A
SPI observations of positron annihilation radiation from the 4th galactic quadrant: sky distribution
During its first year in orbit the INTEGRAL observatory performed deep
exposures of the Galactic Center region and scanning observations of the
Galactic plane. We report on the status of our analysis of the positron
annihilation radiation from the 4th Galactic quadrant with the spectrometer
SPI, focusing on the sky distribution of the 511 keV line emission. The
analysis methods are described; current constraints and limits on the Galactic
bulge emission and the bulge-to-disk ratio are presented.Comment: 4 pages, 2 figures, accepted for publication in the proceedings of
the 5th INTEGRAL worksho
Estrogens Determine Adherens Junction Organization and E-Cadherin Clustering in Breast Cancer Cells via Amphiregulin
Estrogens play an important role in the development and progression of human cancers, particularly in breast cancer. Breast cancer progression depends on the malignant destabilization of adherens junctions (AJs) and disruption of tissue integrity. We found that estrogen receptor alpha (ER alpha) inhibition led to a striking spatial reorganization of AJs and microclustering of E-Cadherin (E-Cad) in the cell membrane of breast cancer cells. This resulted in increased stability of AJs and cell stiffness and a reduction of cell motility. These effects were actomyosindependent and reversible by estrogens. Detailed investigations showed that the ERa target gene and epidermal growth factor receptor (EGFR) ligand Amphiregulin (AREG) essentially regulates AJ reorganization and E-Cad microclustering. Our results not only describe a biological mechanism for the organization of AJs and the modulation of mechanical properties of cells but also provide a new perspective on how estrogens and anti-estrogens might influence the formation of breast tumors
- …