332 research outputs found
Anharmonic magnetic deformation of self-assembled molecular nanocapsules
High magnetic fields were used to deform spherical nanocapsules,
self-assembled from bola-amphiphilic sexithiophene molecules. At low fields the
deformation -- measured through linear birefringence -- scales quadratically
with the capsule radius and with the magnetic field strength. These data
confirm a long standing theoretical prediction (W. Helfrich, Phys. Lett. {\bf
43A}, 409 (1973)), and permits the determination of the bending rigidity of the
capsules as (2.60.8) J. At high fields, an enhanced
rigidity is found which cannot be explained within the Helfrich model. We
propose a complete form of the free energy functional that accounts for this
behaviour, and allows discussion of the formation and stability of nanocapsules
in solution.Comment: 4 pages, 3 figures, accepted in Phys. Rev. Let
Harm avoidance is related to mismatch negativity (MMN) amplitude in healthy subjects
peer reviewedEvent-related potential (ERP) studies evidenced that some personality dimensions induced different controlled cognitive attitudes towards the processing of information. However, few data are available on the possible relationships between personality and automatic attention or early sensory processing. In the present study the relationships between the mismatch negativity (MMN) and personality described by the Cloninger model of personality were investigated. Subjects were 32 healthy volunteers. The MMN was recorded with frequent stimuli tones of 1470 Hz, 70 dB and 40 ms duration, and target (20%) tones of 1470 Hz, 70 dB, 80 ms duration. The subjects completed a French version of the 226-item self-questionnaire TCI within the day following psychophysiological recording. The results showed that the HA dimension was negatively correlated with the MMN amplitude. The association was more present among women than men. No significant relationship existed between the other dimensions of personality and either the MMN amplitude or latency. These findings suggest that the MMN is related to the behavioral inhibition system (BIS), a fact which is consistent with clinical studies conducted on schizophrenia and anxiety disorders. In conclusion, this study suggests that personality dimensions induce different automatic attitudes towards the processing of information. (C) 2002 Published by Elsevier Science Ltd
Exciton bimolecular annihilation dynamics in supramolecular nanostructures of conjugated oligomers
We present femtosecond transient absorption measurements on -conjugated
supramolecular assemblies in a high pump fluence regime.
Oligo(\emph{p}-phenylenevinylene) monofunctionalized with
ureido-\emph{s}-triazine (MOPV) self-assembles into chiral stacks in dodecane
solution below 75C at a concentration of M. We
observe exciton bimolecular annihilation in MOPV stacks at high excitation
fluence, indicated by the fluence-dependent decay of B-exciton
spectral signatures, and by the sub-linear fluence dependence of time- and
wavelength-integrated photoluminescence (PL) intensity. These two
characteristics are much less pronounced in MOPV solution where the phase
equilibrium is shifted significantly away from supramolecular assembly,
slightly below the transition temperature. A mesoscopic rate-equation model is
applied to extract the bimolecular annihilation rate constant from the
excitation fluence dependence of transient absorption and PL signals. The
results demonstrate that the bimolecular annihilation rate is very high with a
square-root dependence in time. The exciton annihilation results from a
combination of fast exciton diffusion and resonance energy transfer. The
supramolecular nanostructures studied here have electronic properties that are
intermediate between molecular aggregates and polymeric semiconductors
Discrete π-Stacks from Self-Assembled Perylenediimide Analogues.
The formation of well-defined finite-sized aggregates represents an attractive goal in supramolecular chemistry. In particular, construction of discrete π-stacked dye assemblies remains a challenge. Reported here is the design and synthesis of a novel type of discrete π-stacked aggregate from two comparable perylenediimide (PDI) dyads (PEP and PBP). The criss-cross PEP-PBP dimers in solution and (PBP-PEP)-(PEP-PBP) tetramers in the solid state are well elucidated using single-crystal X-ray diffraction, dynamic light scattering, and diffusion-ordered NMR spectroscopy. Extensive π-π stacking between the PDI units of PEP and PBP as well as repulsive interactions of swallow-tailed alkyl substituents are responsible for the selective formation of discrete dimer and tetramer stacks. Our results reveal a new approach to preparing discrete π stacks that are appealing for making assemblies with well-defined optoelectronic properties
Actin- and Dynamin-Dependent Maturation of Bulk Endocytosis Restores Neurotransmission following Synaptic Depletion
Bulk endocytosis contributes to the maintenance of neurotransmission at the amphibian neuromuscular junction by regenerating synaptic vesicles. How nerve terminals internalize adequate portions of the presynaptic membrane when bulk endocytosis is initiated before the end of a sustained stimulation is unknown. A maturation process, occurring at the end of the stimulation, is hypothesised to precisely restore the pools of synaptic vesicles. Using confocal time-lapse microscopy of FM1-43-labeled nerve terminals at the amphibian neuromuscular junction, we confirm that bulk endocytosis is initiated during a sustained tetanic stimulation and reveal that shortly after the end of the stimulation, nerve terminals undergo a maturation process. This includes a transient bulging of the plasma membrane, followed by the development of large intraterminal FM1-43-positive donut-like structures comprising large bulk membrane cisternae surrounded by recycling vesicles. The degree of bulging increased with stimulation frequency and the plasmalemma surface retrieved following the transient bulging correlated with the surface membrane internalized in bulk cisternae and recycling vesicles. Dyngo-4a, a potent dynamin inhibitor, did not block the initiation, but prevented the maturation of bulk endocytosis. In contrast, cytochalasin D, an inhibitor of actin polymerization, hindered both the initiation and maturation processes. Both inhibitors hampered the functional recovery of neurotransmission after synaptic depletion. Our data confirm that initiation of bulk endocytosis occurs during stimulation and demonstrates that a delayed maturation process controlled by actin and dynamin underpins the coupling between exocytosis and bulk endocytosis
- …