89 research outputs found

    The overmassive black hole in NGC 1277: new constraints from molecular gas kinematics

    Full text link
    We report the detection of CO(1-0) emission from NGC 1277, a lenticular galaxy in the Perseus Cluster. NGC 1277 has previously been proposed to host an overmassive black hole (BH) compared to the galaxy bulge luminosity (mass), based on stellar-kinematic measurements. The CO(1-0) emission, observed with the IRAM Plateau de Bure Interferometer (PdBI) using both, a more compact (2.9-arcsec resolution) and a more extended (1-arcsec resolution) configuration, is likely to originate from the dust lane encompassing the galaxy nucleus at a distance of 0.9 arcsec (~320 pc). The double-horned CO(1-0) profile found at 2.9-arcsec resolution traces 1.5×108 M1.5\times 10^8\ M_\odot of molecular gas, likely orbiting in the dust lane at $\sim 550\ \mathrm{km\ s^{-1}},whichsuggestsatotalenclosedmassof, which suggests a total enclosed mass of \sim 2\times 10^{10}\ M_\odot.At1arcsecresolution,theCO(10)emissionappearsspatiallyresolvedalongthedustlaneineastwestdirection,thoughatalowsignaltonoiseratio.Inagreementwiththepreviousstellarkinematicmeasurements,theCO(10)kinematicsisfoundtobeconsistentwithan. At 1-arcsec resolution, the CO(1-0) emission appears spatially resolved along the dust lane in east-west direction, though at a low signal-to-noise ratio. In agreement with the previous stellar-kinematic measurements, the CO(1-0) kinematics is found to be consistent with an \sim 1.7\times 10^{10}\ M_\odotBHforastellarmasstolightratioof BH for a stellar mass-to-light ratio of M/L_V=6.3,whilealessmassiveBHof, while a less massive BH of \sim 5\times 10^{9}\ M_\odotispossiblewhenassumingalarger is possible when assuming a larger M/L_V=10$. While the molecular gas reservoir may be associated with a low level of star formation activity, the extended 2.6-mm continuum emission is likely to originate from a weak AGN, possibly characterized by an inverted radio-to-millimetre spectral energy distribution. Literature radio and X-ray data indicate that the BH in NGC 1277 is also overmassive with respect to the Fundamental Plane of BH activity.Comment: 15 pages, 13 figures; accepted for publication in MNRAS on 20 January 2016; updated version including minor changes and note added in proo

    The Nearby QSO Host I Zw 1: NIR Probing of Structural Properties and Stellar Populations

    Full text link
    The likely merger process and the properties of the stellar populations in the I Zw 1 host galaxy are analyzed on the basis of multi-wavelength observations (with the ISAAC camera at the Very Large Telescope (VLT/UT1) of the European Southern Observatory (ESO), Chile (Paranal), with the interferometer of the Berkeley-Illinois-Maryland Association (BIMA), USA (Hat Creek/California), and with the IRAM Plateau de Bure Interferometer (PdBI), France) and N-body simulations. The data give a consistent picture of I Zw 1, with properties between those of ultra-luminous infrared galaxies (ULIRGs) and QSOs as displayed by transition objects in the evolutionary sequence of active galaxies.Comment: 4 pages, 2 figures, to be published in "The Dense Interstellar Medium in Galaxies", proceedings of the 4th Cologne-Bonn-Zermatt-Symposium held September 22-26, 2003, in Zermatt, Switzerlan

    Parameter Study of Star-Discs Encounters

    Full text link
    Interactions between disc-surrounded stars might play a vital role in the formation of planetary systems. Here a first parameter study of the effects of encounters on low-mass discs is presented. The dependence of the mass and angular momentum transport on the periastron distance, the relative mass of the encountering stars and eccentricity of the encounter is investigated in detail. This is done for prograde and retrograde coplanar encounters as well as non-coplanar encounters. For distant coplanar encounters our simulation results agree with the analytical approximation of the angular momentum loss by Ostriker(1994). However, for close or high-mass encounters, significant differences to this approximation are found. This is especially so in the case of retrograde encounters, where the analytical result predict no angular momentum loss regardless of the periastron distance whereas the simulations find up to ~ 20% loss for close encounters. For the non-coplanar case a more complex dependency on the inclination between orbital path and disc plane is found than for distant encounters. For the coplanar prograde case new fitting formulae for the mass and angular momentum loss are obtained, which cover the whole range from grazing to distant encounters. In addition, the final disc size and the mass exchange between discs is examined, demonstrating that for equal mass stars in encounters as close as 1.5 the disc radius, the disc size only is reduced by approximately 10%.Comment: 11 pages, 9 figure

    Optical Integral Field Spectroscopy of NGC 5850

    Full text link
    Here we present the preliminary results of the analysis of VIMOS observations of the central 4.5 kpc of the double-barred galaxy NGC 5850. We use optical diagnostic diagrams to study the main ionization mecahnism across the field of view confirming the LINER nature in the continuum peak location. Also a star-forming (SF) region is found close to it (0.46 kpc), a second SF region is located east of the center (1.6 kpc). Further the data reveals a complex nuclear gas kinematics which is likely to be dominated by the secondary bar.Comment: 6 pages, 5 figure

    The MUSE view of QSO PG 1307+085: an elliptical galaxy on the \u3cem\u3eM\u3c/em\u3e\u3csub\u3eBH–σ*\u3c/sub\u3e relation interacting with its group environment

    Get PDF
    We report deep optical integral-field spectroscopy with the Multi-Unit Spectroscopic Explorer (MUSE) at the Very Large Telescope of the luminous radio-quiet quasi-stellar object (QSO) PG 1307+085 obtained during commissioning. Given the high sensitivity and spatial resolution delivered by MUSE, we are able to resolve the compact (re ∼ 1.3 arcsec) elliptical host galaxy. After spectroscopic deblending of the QSO and host galaxy emission, we infer a stellar velocity dispersion of σ* = 155 ± 19 km s−1. This places PG 1307+085 on the local MBH–σ* relation within its intrinsic scatter but offset towards a higher black hole mass with respect to the mean relation. The MUSE observations reveal a large extended narrow-line region (ENLR) around PG 1307+085 reaching out to ∼30 kpc. In addition, we detect a faint ionized gas bridge towards the most massive galaxy of the galaxy group at 50 kpc distance. The ionized gas kinematics does not show any evidence for gas outflows on kpc scales despite the high QSO luminosity of Lbol \u3e 1046 erg s−1. Based on the ionized gas distribution, kinematics and metallicity we discuss the origin of the ENLR with respect to its group environments including minor mergers, ram-pressure stripping or gas accretion as the likely scenarios. We conclude that PG 1307+085 is a normal elliptical host in terms of the scaling relations, but that the gas is likely affected by the environment through gravity or ambient pressure. It is possible that the interaction with the environment, seen in the ionized gas, might be responsible for driving sufficient gas to the black hole

    The WiFeS S7 AGN survey: Current status and recent results on NGC 6300

    Full text link
    The Siding Spring Southern Seyfert Spectroscopic Snapshot Survey (S7) is a targeted survey probing the narrow-line regions (NLRs) of a representative sample of ~140 nearby (z<0.02) Seyfert galaxies by means of optical integral field spectroscopy. The survey is based on a homogeneous data set observed using the Wide Field Spectrograph WiFeS. The data provide a 25x38 arcsec2^2 field-of-view around the galaxy centre at typically ~1.5 arcsec spatial resolution and cover a wavelength range between ~3400 - 7100 A˚\AA at spectral resolutions of ~100 km s1^{-1} and ~50 km s1^{-1} in the blue and red parts, respectively. The survey is primarily designed to study gas excitation and star formation around AGN, with a special focus on the shape of the AGN ionising continuum, the interaction between radio jets and the NLR gas, and the nature of nuclear LINER emission. We provide an overview of the current status of S7-based results and present new results for NGC 6300.Comment: 5 pages, 1 figure, Refereed Proceeding of the "The Universe of Digital Sky Surveys" conference held at the INAF - Observatory of Capodimonte, Naples, on 25th-28th november 2014, to be published on Astrophysics and Space Science Proceedings, edited by Longo, Napolitano, Marconi, Paolillo, Iodic

    A multi-particle model of the 3C 48 host

    Full text link
    The first successful multi-particle model for the host of the well-known quasi-stellar object (QSO) 3C 48 is reported. It shows that the morphology and the stellar velocity field of the 3C 48 host can be reproduced by the merger of two disk galaxies. The conditions of the interaction are similar to those used for interpreting the appearance of the ''Antennae'' (NGC 4038/39) but seen from a different viewing angle. The model supports the controversial hypothesis that 3C 48A is the second nucleus of a merging galaxy, and it suggests a simple solution for the problem of the missing counter tidal tail.Comment: 5 pages, 5 figures, accepted for publication in A&

    The Arp 220 merger on kpc scales

    Full text link
    For the first time we study the Eastern nucleus in greater detail and search for the more extended emission in the molecular gas in different CO line transitions of the famous ULIRG Arp 220. Furthermore we present a model of the merger in Arp 220 on large scales with the help of the CO data and an optical and near-infrared composite HST image of the prototypical ULIRG. Using the Plateau de Bure Interferometer (PdBI) we obtained CO(2-1) and (1-0) data at wavelengths of 1 and 3 mm in 1994, 1996, 1997 and 2006 at different beam sizes and spatial resolutions. The simulations of the merger in Arp 220 were performed with the Identikit modeling tool. The model parameters that describe the galaxy merger best give a mass ratio of 1:2 and result in a merger of ~6x10^8 yrs. The low resolution CO(1-0) PdBI observations suggest that there are indications for emission ~10" towards the south, as well as to the north and to the west of the two nuclei.Comment: accepted for publication in ApJ, 14 pages 10 figure

    Dissecting Galaxies: Separating Star Formation, Shock Excitation and AGN Activity in the Central Region of NGC 613

    Get PDF
    The most rapidly evolving regions of galaxies often display complex optical spectra with emission lines excited by massive stars, shocks and accretion onto supermassive black holes. Standard calibrations (such as for the star formation rate) cannot be applied to such mixed spectra. In this paper we isolate the contributions of star formation, shock excitation and active galactic nucleus (AGN) activity to the emission line luminosities of individual spatially resolved regions across the central 3 ×\times 3 kpc2^2 region of the active barred spiral galaxy NGC\sim613. The star formation rate and AGN luminosity calculated from the decomposed emission line maps are in close agreement with independent estimates from data at other wavelengths. The star formation component traces the B-band stellar continuum emission, and the AGN component forms an ionization cone which is aligned with the nuclear radio jet. The optical line emission associated with shock excitation is cospatial with strong H2H_2 and [Fe II] emission and with regions of high ionized gas velocity dispersion (σ>100\sigma > 100 km s1^{-1}). The shock component also traces the outer boundary of the AGN ionization cone and may therefore be produced by outflowing material interacting with the surrounding interstellar medium. Our decomposition method makes it possible to determine the properties of star formation, shock excitation and AGN activity from optical spectra, without contamination from other ionization mechanisms.Comment: 16 pages, 12 figures. Accepted for publication in MNRA
    corecore