266 research outputs found

    Hyperstars: phase transition to (meta)-stable hyperonic matter in neutron stars

    Get PDF
    Recent progress in the understanding of the high density phase of neutron stars advances the view that a substantial fraction of the matter consists of hyperons. The possible impacts of a highly attractive interaction between hyperons on the properties of compact stars is investigated. We find that the equation of state exhibits a second stable minimum at large hyperon contents which is in accord with existing hypernuclear data. This second solution gives rise to new effects for neutron star properties which are similar to the ones proposed for the deconfinement transition to strange quark matter and absolutely stable strange stars. We find that the corresponding hyperstars can have rather small radii of R=6-8 km independent of the mass. PACS: 26.60+c, 21.65+f, 97.60.Gb, 97.60.J

    Phase transition to hyperon matter in neutron stars

    Get PDF
    Recent progress in the understanding of the high density phase of neutron stars advances the view that a substantial fraction of the matter consists of hyperons. The possible impacts of a highly attractive interaction between hyperons on the properties of compact stars are investigated. We find that a hadronic equation of state with hyperons allows for a first order phase transition to hyperonic matter. The corresponding hyperon stars can have rather small radii of R ~ 8 km. PACS: 26.60+c, 21.65+f, 97.60.Gb, 97.60.J

    Zinc supplement greatly improves the condition of parkin mutant Drosophila

    Get PDF
    Parkinson's disease (PD) is a progressive neurodegenerative disorder in which oxidative stress is implicated as a major causative factor. Mutations in the gene encoding Parkin, a ubiquitin ligase, are responsible for a familial form of PD. In a Drosophila disease model lacking Parkin (park 25 null mutant), we tested the effect of zinc supplementation. Zinc is an essential trace metal and a component of many enzymes and transcriptional regulators. Unlike copper and iron, zinc is not redox-active and under most conditions serves as an antioxidant. We find that the condition of parkin mutants raised on zinc-supplemented food is greatly improved. At zinc concentrations where controls begin to show adverse effects as a result of the metal supplement, parkin mutants perform best, as manifested in a higher frequency of reaching adulthood, extended lifespan and improved motoric abilitie

    Chiral Lagrangian for strange hadronic matter

    Get PDF
    A generalized Lagrangian for the description of hadronic matter based on the linear SU(3)L × SU(3)R -model is proposed. Besides the baryon octet, the spin-0 and spin-1 nonets, a gluon condensate associated with broken scale invariance is incorporated. The observed values for the vacuum masses of the baryons and mesons are reproduced. In mean-field approximation, vector and scalar interactions yield a saturating nuclear equation of state. We discuss the di culties and possibilities to construct a chiral invariant baryon-meson interaction that leads to a realistic equation of state. It is found that a coupling of the strange condensate to nucleons is needed to describe the hyperon potentials correctly. The effective baryon masses and the appearance of an abnormal phase of nearly massless nucleons at high densities are examined. A nonlinear realization of chiral symmetry is considered, to retain a Yukawa-type baryon-meson interaction and to establish a connection to the Walecka-model

    Particle ratios at RHIC : effective hadron masses and chemical freeze-out

    Get PDF
    The measured particle ratios in central heavy-ion collisions at RHIC-BNL are investigated within a chemical and thermal equilibrium chiral SU(3) theta - omega approach. The commonly adopted noninteracting gas calculations yield temperatures close to or above the critical temperature for the chiral phase transition, but without taking into account any interactions. Contrary, the chiral SU(3) model predicts temperature and density dependent e ective hadron masses and e ective chemical potentials in the medium and a transition to a chirally restored phase at high temperatures or chemical potentials. Three di erent parametrizations of the model, which show di erent types of phase transition behaviour, are investigated. We show that if a chiral phase transition occured in those collisions, freezing of the relative hadron abundances in the symmetric phase is excluded by the data. Therefore, either very rapid chemical equilibration must occur in the broken phase, or the measured hadron ratios are the outcome of the dynamical symmetry breaking. Furthermore, the extracted chemical freeze-out parameters di er considerably from those obtained in simple noninteracting gas calculations. In particular, the three models yield up to 35 MeV lower temperatures than the free gas approximation. The in-medium masses turn out di er up to 150 MeV from their vacuum values

    Phase transition in the chiral sigma-omega model with dilatons

    Get PDF
    We investigate the properties of di erent modifications to the linear -model (including a dilaton field associated with broken scale invariance) at finite baryon density and nonzero temperature T. The explicit breaking of chiral symmetry and the way the vector meson mass is generated are significant for the appearance of a phase of nearly vanishing nucleon mass besides the solution describing normal nuclear matter. The elimination of the abnormal solution prohibits the onset of a chiral phase transition but allows to lower the compressibility to a reasonable range. The repulsive contributions from the vector mesons are responsible for the wide range of stability of the normal phase in the (µ, T)-plane. The abnormal solution becomes not only energet- ically preferable to the normal state at high temperature or density, but also mechanically stable due to the inclusion of dilatons. PACS number:12.39.

    Hadrons in dense resonance matter: a chiral SU(3) approach

    Get PDF
    A nonlinear chiral SU(3) approach including the spin 3 2 decuplet is developed to describe dense matter. The coupling constants of the baryon resonances to the scalar mesons are determined from the decuplet vacuum masses and SU(3) symmetry relations. Di erent methods of mass generation show significant differences in the properties of the spin- 3 2 particles and in the nuclear equation of stat

    A Very Strong Enhancer Is Located Upstream of an Immediate Early Gene of Human Cytomegalovirus

    Get PDF
    A strong transcription enhancer was identified in the genomic DNA (235 kb) of human cytomegalovirus (HCMV), a ubiquitous and severe pathogen of the herpesvirus group. Cotransfection of enhancerless SV40 DNA with randomly fragmented HCMV DNA yielded two SV40-HCMV recombinant viruses that had incorporated overlapping segments of HCMV DNA to substitute for the missing SV40 enhancer. Within HCMV, these enhancer sequences are located upstream of the transcription initiation site of the major immediate-early gene, between nucleotides -118 and −524. Deletion studies with the HCMV enhancer, which harbors a variety of repeated sequence motifs, show that different subsets of this enhancer can substitute for the SV40 enhancer. The HCMV enhancer, which seems to have little cell type or species preference, is severalfold more active than the SV40 enhancer. It is the strongest enhancer we have analyzed so far, a property that makes it a useful component of eukaryotic expression vectors
    • …
    corecore