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Abstract

The measured particle ratios in central heavy-ion collisions at RHIC-BNL are investigated within

a chemical and thermal equilibrium chiral SU(3) σ−ω approach. The commonly adopted noninter-

acting gas calculations yield temperatures close to or above the critical temperature for the chiral

phase transition, but without taking into account any interactions. Contrary, the chiral SU(3)

model predicts temperature and density dependent effective hadron masses and effective chemical

potentials in the medium and a transition to a chirally restored phase at high temperatures or

chemical potentials. Three different parametrizations of the model, which show different types of

phase transition behaviour, are investigated. We show that if a chiral phase transition occured in

those collisions, ”freezing” of the relative hadron abundances in the symmetric phase is excluded

by the data. Therefore, either very rapid chemical equilibration must occur in the broken phase, or

the measured hadron ratios are the outcome of the dynamical symmetry breaking. Furthermore,

the extracted chemical freeze-out parameters differ considerably from those obtained in simple

noninteracting gas calculations. In particular, the three models yield up to 35 MeV lower temper-

atures than the free gas approximation. The in-medium masses turn out differ up to 150 MeV

from their vacuum values.
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INTRODUCTION

Thermodynamical equilibrium calculations of particle production in high energy particle-

and nuclear collisions have been carried out for a long time [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11].

Recently hadron abundances and particle ratios have been measured in heavy-ion collisions

from SIS, AGS, SPS to RHIC energies. These data have revived the interest in the extrac-

tion of temperatures and chemical potentials from thermal equilibrium ”chemical” model

analyses. The experimentally determined hadron ratios can be fitted well with straightfor-

ward noninteracting gas model calculations [4, 6, 9, 10, 11, 12, 13], if a sudden breakup of

a thermalized source is assumed and once the subsequent feeding of the various channels by

the strongly decaying resonances is taken into account. From the χ2 freeze-out fits one has

constructed a quite narrow band of freeze-out values in the T − µB plane (see e.g.[12, 13]).

The extracted freeze-out parameters are fairly close to the phase transition curve for SPS

and RHIC energies. However, when we are indeed so close to the phase transition or to

a crossover as suggested by the data for T and µB, we can not afford to neglect the very

in-medium effects we are after - and which, after all, do produce the phase transition. Thus,

since noninteracting gas models neglect any kind of possible in-medium modifications they

can not yield information about the phase transition.

Therefore, we will employ below a relativistic selfconsistent chiral model of hadrons and

hadron matter developed in [14, 15, 16]. This model can be used as a thermodynamically

consistent effective theory or as a toy model, which embodies the restoration of chiral sym-

metry at high temperatures or densities. Therefore the model predicts temperature and

density dependent hadronic masses and effective chemical potentials, which have already

been proposed and considered in [5, 14, 17, 18, 19, 20]. Thus, using the chiral SU(3) model

we can investigate, whether the freeze-out in fact takes place close to the phase transition

boundary (if it exists) and if the extracted T, µB parameters are strongly model dependent.

Depending on the chosen parameters and degrees of freedom different scenarios for the chiral

phase change are predicted by the model: Strong or weak first order phase transition or a

crossover. The transitions take place around Tc = 155 MeV [14, 21], which is in qualita-

tive agreement with lattice predictions [22] for the critical temperature for the onset of a

deconfined phase which coincides with that of a chirally restored phase [23].
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MODEL DESCRIPTION

The chiral SU(3) model is presented in detail in [14, 16]. We will briefly introduce the

model here: We consider a relativistic field theoretical model of baryons and mesons built

on chiral symmetry and broken scale invariance. The general form of the Lagrangean looks

as follows:

L = Lkin +
∑

W=X,Y,V,A,u

LBW + LVP + Lvec + L0 + LSB. (1)

Lkin is the kinetic energy term, LBW includes the interaction terms of the different baryons

with the various spin-0 and spin-1 mesons (see [16] for details). The baryon masses are gen-

erated by both, the nonstrange σ (< qq̄ >) and the strange ζ (< ss̄ >) scalar condensate.

LVP contains the interaction terms of vector mesons with pseudoscalar mesons. Lvec gener-

ates the masses of the spin-1 mesons through interactions with spin-0 fields, and L0 gives the

meson-meson interaction terms which induce the spontaneous breaking of chiral symmetry.

It also includes a scale-invariance breaking logarithmic potential. Finally, LSB introduces an

explicit symmetry breaking of the U(1)A, the SU(3)V , and the chiral symmetry. All these

terms have been discussed in detail in [14, 16].

The hadronic matter properties at finite density and temperature are studied in the mean-

field approximation [24]. Then the Lagrangean (1) becomes

LBX + LBV = −
∑

i

ψi[giωγ0ω
0 + giφγ0φ

0 +m∗

i ]ψi (2)

Lvec =
1

2
m2

ω

χ2

χ2
0

ω2 +
1

2
m2

φ

χ2

χ2
0

φ2 + g4
4(ω

4 + 2φ4)

V0 =
1

2
k0χ

2(σ2 + ζ2) − k1(σ
2 + ζ2)2 − k2(

σ4

2
+ ζ4) − k3χσ

2ζ (3)

+ k4χ
4 +

1

4
χ4 ln

χ4

χ4
0

− δ

3
χ4 ln

σ2ζ

σ2
0ζ0

(4)

VSB =

(

χ

χ0

)2 [

m2
πfπσ + (

√
2m2

KfK − 1√
2
m2

πfπ)ζ

]

,

where mi is the effective mass of the hadron species i. σ and ζ correspond to the scalar

condensates, ω and φ represent the non-strange and the strange vector field respectively,

and χ is the scalar-isoscalar dilaton field, which mimics the effects of the gluon condensate

[25]. Only the scalar (LBX) and the vector meson terms (LBV ) contribute to the baryon-

meson interaction, since for all other mesons the expectation value vanishes in the mean-field
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approximation. The grand canonical potential Ω per volume V as a function of chemical

potential µ and temperature T can be written as:

Ω

V
= −Lvec − L0 − LSB − Vvac ∓ T

∑

i

γi

(2π)3

∫

d3k
[

ln
(

1 ± e−
1

T
[E∗

i
(k)−µ∗

i
]
)]

, (5)

with the baryons (top sign) and mesons (bottom sign). The vacuum energy Vvac (the po-

tential at ρB = 0, T = 0) has been subtracted in order to get a vanishing vacuum energy.

γi denote the hadronic spin-isospin degeneracy factors. The single particle energies are

E∗
i (k) =

√

k2
i +m∗

i
2 and the effective chemical potentials read µ∗

i = µi − giωω − gφiφ.

The mesonic fields are determined by extremizing Ω
V

(µ, T = 0). The density of particle i can

be calculated by differentiating Ω with respect to the corresponding chemical potential µi.

This yields:

ρi = γi

∫

d3k

(2π)3

[

1

exp [(E∗
i − µ∗

i )/T ] ± 1

]

. (6)

All other thermodynamic quantities can also be obtained from the grand canonical potential.

In the present calculation the lowest lying baryonic octet and decuplet and the lowest lying

mesonic nonets are coupled to the relativistic mean fields. Depending on the coupling of the

baryon resonances (the decuplet) to the field equations, the model shows a first order phase

transition or a crossover (for details see [21]). We will use three different parameter sets:

Parameter set CI treats the members of the baryon decuplet as free particles, which yields

a crossover behaviour. Parameter sets CII and CIII include also the (anti)-baryon decuplet

as sources for the meson field equations. They differ by an additional explicit symmetry

breaking for the baryon resonances along the hypercharge direction, as described in [16]

for the baryon octet. This is included in CII and not used in CIII. This leads to a weak

first order phase transition at µ = 0 for CII and two first order phase transitions for CIII,

which can be viewed as one strong first order phase transition. Heavier resonances up to

m = 2 GeV are always included as free particles. The resulting baryon masses for CI and

CIII are shown in fig. 1. We observe a continous decrease of the baryon masses for CI starting

at T ≈ 150 MeV. In contrast, CIII shows two jumps around T = 155 MeV. The critical

energy densities, the entropy densities and the transition temperatures for µq = µs = 0

(µq = µB/3, µs = µB/3 − µS) are specified in table I.
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FIG. 1: Baryon octet masses as function of temperature for vanishing chemical potential. Left CI,

right CIII. Note the continuous change of the masses starting around T = 150 MeV. In contrast

for CIII two phase-transitions occur around Tc ≈ 155 MeV. These result from the separate jumps

in the nonstrange (σ) and the strange (ζ) condensate.

ǫ−/ǫ0 ǫ+/ǫ0 s−[fm−3] s+[fm−3] Tc[MeV]

CII 2.8 7.2 2.8 6.7 156.3

CIII - 1st PT 2.3 8.3 2.4 7.9 153.4

CIII - 2nd PT 10.5 17.1 9.8 15.7 155.5

TABLE I: Energy density, entropy density and phase transition temperatures for CII,CIII, µq =

µs = 0. The (−), (+) signs refer to an approach to the phase transition from below and above,

respectively. Tc denotes the phase transition temperature. ǫ0 = 138.45 MeV/fm3 denotes the

energy density of nuclear matter in the ground state.

PARTICLE RATIOS IN THE CHIRAL SU(3) × SU(3) MODEL

Since the chiral SU(3) model predicts density and temperature dependent hadronic masses

and effective potentials, in contrast to noninteracting models, the resulting particle ratios
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and therefore the deduced freeze-out temperatures and baryon chemical potentials are ex-

pected to change [26]. Hence in the following, we identify combinations of temperatures and

chemical potentials that fit the observed particle ratios in the chiral model. In all calcula-

tions the value of the strange chemical potential µS is chosen such that the net strangeness

fs = 0. We are looking for minima of χ2 with

χ2 =
∑

i

(

rexp
i − rmodel

i

)2

σ2
i

. (7)

Here rexp
i is the experimental ratio, rmodel

i is the ratio calculated in the model and σi repre-

sents the error in the experimental data points. We use the same ratios as in [6]: p̄/p, Λ̄/Λ,

Ξ̄/Ξ, π−/π+, K−/K+, K−/π−, K∗
0/h

−, K̄∗
0/h

−.

Even though the only parameters in a thermal and chemical equilibrium approach on first

sight are the temperature and the baryon chemical potential, there exist further unknowns:

On the one hand, some decays of high mass resonances are not well known and on the

other hand the effect of weak decays in the experiments strongly depends on the detector

geometry and on the reconstruction efficiency of the experiments. The feeding correction

from the strong and electromagnetic decays of the hadronic resonances used here employs

the procedure used in the UrQMD model [27, 28]. Weak decays are not considered here.

We rather focus on the principal question whether an interacting chiral SU(3) approach

with m∗ 6= mvac can at all describe the particle yields at RHIC. Fine tuning of the χ2 by

adjustment of the weak decay scheme is not our intention. Even though it has been shown

[29] that χ2 values may be improved by including weak decays.

To compare the quality of the fits obtained in the chiral model with those obtained from

the noninteracting gas approach, we set all masses and chemical potentials contained in the

chiral model to their vacuum values and again use the same UrQMD feeding procedure as for

the interacting model. This yields the ideal gas denoted igFFM . We find that the resulting

ideal gas ratios are not identical but comparable to those obtained in the literature [6, 26,

29, 30]. The differences should only result from a different treatment of weak interactions

and from the uncertainty in the decay scheme of high mass resonances.
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RESULTS FOR AU + AU COLLISIONS AT RHIC

First, we find that a reasonable fit of the measured particle ratios at RHIC is possible in

all three phase transition scenarios of the chiral model and the ideal gas case with comparable

quality.

Second, the resulting freeze-out values depend on the model employed, i.e. crossover,

weak first order, strong first order or free thermal gas.

Third, a reasonable description of the data is impossible above Tc in the models showing

a first order phase transition. This shows that no direct freeze-out from the restored phase

is observed.

Figure 2 shows the value of χ2 in the T − µB plane for the crossover case and for the

strong first order phase transition. We see that the best fit T − µB values differ in both

models. Furthermore, in the crossover case χ2 is well behaved as a function of T and µB. In

contrast, the model with a strong first order phase transition shows a very steep increase of

χ2 at the phase transition boundary: the quality of the fit decreases drastically due to the

jump of the effective masses at the phase transition boundary. Above Tc the χ2 values are

inacceptable, χ2 > 500.
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FIG. 2: χ2 contours in the T − µB plane for CI (left) and CIII (right). Data are taken from [6].

On the left, the adiabatic path (constant entropy per net baryon S/A), corresponding to expanisve

cooling of an ideal fluid, is also shown. µS is chosen such that fs = 0.
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Au+Au Experiment CI CII CIII igFFM BMRS

Tchem [MeV] 170.8 155.0 153.3 187.6 174.0

µB
chem [MeV] 48.3 54.6 51.0 44.1 46.0

µs
chem [MeV] 11.1 9.8 9.4 13.5 13.6

χ2 5.5 5.7 5.4 5.7 5.7

ρhad[fm−3] 0.66 0.38 0.35 1.12

ρB + ρB̄ [fm−3] 0.15 0.08 0.07 0.28

p[MeV/fm3] 108 55 51 207

ǫ[MeV/fm3] 695 356 326 1324

E/A[MeV ] 1053 937 931 1182 ≈ 1100

S/A 157 164 177 142

p/p
0.65(7) [STAR], 0.64(8)[PHENIX]

0.60(7) [PHOBOS], 0.61(6) [BRAHMS]
0.640 0.648 0.652 0.629 0.629

Λ/Λ 0.77(7) [STAR] 0.714 0.695 0.702 0.721 0.753

Ξ/Ξ 0.82(8) [STAR] 0.787 0.731 0.743 0.834 0.894

π−/π+
1.00(2) [PHOBOS], 0.95(6)[BRAHMS] 1.000 1.000 1.000 1.000 1.007

K−/K+
0.88(5) [STAR], 0.78(13) [PHENIX]

0.91(9) [PHOBOS], 0.89(7) [BRAHMS]
0.919 0.914 0.915 0.916 0.894

K−/π− 0.15(2) [STAR] 0.183 0.168 0.168 0.179 0.145

p/π− 0.08(1) [STAR] 0.082 0.084 0.078 0.083 0.078

K∗
0/h− 0.058(17) [STAR] 0.055 0.049 0.049 0.046 0.032

K∗
0/h− 0.060(17) [STAR] 0.049 0.044 0.044 0.041 0.037

TABLE II: Chiral fit of the particle ratios measured at RHIC at
√

s = 130 GeV. Data and BMRS-fit

taken from [6].

The resulting best-fit particle ratios, χ2-values and thermodynamic quantities are shown

in table II and figure 3.

The χ2 values for the chiral model are: χ2
CI = 5.50, χ2

CII = 5.73 and χ2
CIII = 5.40. Thus,

all three parameter sets describe the data equally well. Furthermore, the agreement is as
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good as in the noninteracting gas calculation (χ2
ig = 5.72 [6], χ2

FFM = 5.66). The best fit

T−µB parameters vary quite considerably between the different models. The noninteracting

gas calculation yields T = 187.6 MeV and µB = 44.1 MeV. These freeze-out values can be

compared to those obtained in other ideal gas calculations: T = 174 MeV, µB = 46 MeV

in [6], T = 165 MeV, µB = 41 MeV in [30] and T = 190 MeV, µB = 45 MeV in [31]. The

crossover case in the interacting chiral model (CI) yields T = 170.8 MeV, µB = 48.3 MeV.

Very strong deviations are found for the models with a first order phase transition (CII,CIII):

The freeze-out temperatures are T = 155 MeV (CII) and T = 153.3 MeV (CIII), more than

30 MeV lower than for igFFM . The fitted baryon chemical potentials µB increase by about

7−10 MeV. These T −µB pairs are very close to the phase boundary (CII) or even right on

it (CIII) and are about 10 MeV higher than the values obtained at SPS-energies [32]. Mainly

due to the different freeze-out temperatures the values of the corresponding thermodynamic

quantities vary between the different approaches. However, the energy per particle E/A

is approximately 1 GeV in all cases. This ’unified freeze-out condition’ has already been

proposed in [33].

. . . . .

.
.

. .

. . . . .

.
.

. .

FIG. 3: Particle ratios calculated with CI (left) and CIII (right) compared to RHIC data as

compiled in [6].

The fact that the freeze-out appears right at the phase boundary or at crossover implies

that there are large in-medium corrections, in particular for the effective masses, a phe-

nomenon observed already in [17]. The effective masses shown in figure 4 are shifted up to
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15% from their vacuum values. However, all the interacting models show similar values for

the effective mass of a given hadron. The strongest in-medium modifications are observed

for the nonstrange baryons (∆m∗
i /mi ≈ 15%). Mesons and strange baryons show smaller

changes of the effective masses, e.g. about 10% for Λ, π,K∗, about 5% for the Kaons and

nearly no change for the Ξs.

FIG. 4: Effective masses for the different interacting chiral models and the ideal gas (vacuum

values) case. The differences among the interacting approaches are less than 2%.

These results, together with the steep χ2 contours from Fig. 2, suggest that the relative

particle abundances “freeze” shortly after the spontaneous breaking of chiral symmetry.

The success of our fit suggests extremely rapid chemical equilibration (through abundance-

changing reactions) in the state with broken symmetry. Fig. 2 shows that the chemical

composition of the hadronic system has to change substantially within a small temperature

interval, just before freeze-out, even for the crossover transition (i.e. parameter set CI); for

reference, we have indicated the dynamical path in the T − µB plane corresponding to the

expansion of a perfect fluid (i.e. with constant entropy per net baryon [34]). While 2 → n

reactions are perhaps too slow to explain such rapid chemical equilibration [35, 36], m→ n

processes with several particles in the initial state may be important as well [37, 38, 39, 40].

Alternatively, the appearence of chemical equilibrium right after the phase transition (or

the crossover) to the state of broken chiral symmetry might just be the outcome of the

dynamical symmetry breaking process itself [41], with statistical occupation of the various

hadronic channels according to phase space [42, 43, 44, 45]. If so, number-changing reactions

in the broken phase need not proceed at a high rate. To test this picture experimentally,

it might be useful to consider central collisions of small ions like protons or deuterons,

at similar energy and particle densities in the central region as for central Au+Au. For
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systems of transverse extent comparable to the correlation lengths of the chiral condensates,

the dynamical symmetry breaking process should be different from that in large systems

(for example, the mean field approximation should not apply). The correlation lengths ξσ,ζ

are given by

ξ−2
σ =

∂2 (Ω/V )

∂σ2
, (8)

and accordingly for ξζ. We evaluate the curvature of the thermodynamical potential at the

global minimum and for T , µB, µS at the freeze-out point. For parameter sets CI, CII,

CIII we obtain ξσ = 0.37 fm, 0.41 fm, 0.40 fm, respectively. For the correlation length of

the strange condensate we obtain ξζ = 0.20 fm in all three cases. The correlation lengths

are not very much smaller than, say, the radius of a proton. Thus, even if the freeze-out

point for high-energy pp collisions happens to be close to that for Au+Au collisions at RHIC

energies, the transition from the symmetry restored to the broken phase might be different.

Finally, we also note that the correlation lengths obtained from our effective potential are

not larger than the thermal correlation length 1/T at freeze-out, and so corrections beyond

the mean-field approximation employed here should be analyzed in the future.

CONCLUSION

Particle ratios as calculated in a chiral SU(3) σ−ω model are compared with RHIC data

for Au+Au at
√

130 AGeV and with noninteracting gas calculations. Since different versions

of the chiral model show qualitatively different phase transition scenarios, we investigate

whether the particle production, i.e. the chemistry of the system, is sensitive to the phase

transition behaviour. Since we have shown that the current data are described by all three

different phase transition scenarios and the ideal gas model, we can so far not favour or

rule out any one scenario. In all interacting models the effective masses at freeze-out are

shifted up to 15% from their vacuum values. The fitted chemical freeze-out temperatures and

chemical potentials depend on the order of the phase transition. The crossover case yields

15 MeV shifted T values as compared to the noninteracting gas model while the models with

a first order phase transition yield more than 30 MeV lower temperatures. Furthermore,

the fitted freeze-out points are located practically right on the phase transition boundary, in

the first order phase transition scenarios, but T is always ≤ Tc. This suggests that at RHIC

the system emerges after the chiral chiral phase transition. This of course is only true if
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a first order phase transition does actually occur in QCD at small chemical potentials and

high T . ”Freezing” of the relative abundances of various hadrons in the symmetric phase

(at T > Tc) is excluded.
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