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Abstract

A nonlinear chiral SU(3) approach including the spin 3
2

decuplet is developed

to describe dense matter. The coupling constants of the baryon resonances to

the scalar mesons are determined from the decuplet vacuum masses and SU(3)

symmetry relations. Different methods of mass generation show significant

differences in the properties of the spin-3
2

particles and in the nuclear equation

of state.
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I. INTRODUCTION

The investigation of the equation of state of strongly interacting matter is one of the

most challenging problems in nuclear and heavy ion physics. Dense nuclear matter exists

in the interior of neutron stars, and its behaviour plays a crucial role for the structure

and properties of these stellar objects. The behaviour of hadronic matter at high densities

and temperatures strongly influences the observables in relativistic heavy ion collisions (e.g.

flow, particle production,...). The latter depend on the bulk and nonequilibrium properties

of the produced matter (e.g. pressure, density, temperature, viscosity,...) and the properties

of the constituents (effective masses, decay widths, dispersion relations,...). So far it is

not possible to determine the equation of state of hadronic matter at high densities (and

temperatures) from first principles. QCD is not solvable in the regime of low momentum

transfers and finite baryon densities. Therefore one has to pursue alternative ways to describe

the hadrons in dense matter. Effective models, where only the relevant degrees of freedom

for the problem are considered are solvable and can contain the essential characteristics of

the full theory. For the case of strongly interacting matter this means that one considers

hadrons rather than quarks and gluons as the relevant degrees of freedom. Several such

models like the RMF model(QHD) and its extensions (QHD II, nonlinear Walecka model)

successfully describe nuclear matter and finite nuclei [1–5]. Although these models are

effective relativistic quantum field theories of baryons and mesons, they do not consider

essential features of QCD, namely broken scale invariance and approximate chiral symmetry.

Including SU(2) chiral symmetry in these models by adding repulsive vector mesons to

the SU(2)-linear σ-model does neither lead to a reasonable description of nuclear matter

ground state properties nor of finite nuclei [6]. Either one must use a nonlinear realization

of chiral symmetry [7,8] or include a dilaton field and a logarithmic potential motivated

by broken scale invariance [9,10] in order to obtain a satisfactory description of nuclear

matter. Extending these approaches to the strangeness sector leads to a number of new,

undetermined coupling constants due to the additional strange hadrons. Both to overcome
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this problem and to put restrictions on the coupling constants in the non-strange sector

the inclusion of SU(3) [11] and chiral SU(3) [12,13] has been investigated in the last years.

Recently [13] it was shown that an extended SU(3)×SU(3) chiral σ−ω model can describe

nuclear matter ground state properties, vacuum properties and finite nuclei simultaneously.

This model includes the lowest lying SU(3) multiplets of the baryons (octet), the spin-0

and the spin-1 mesons (nonets) as physical degrees of freedom. The present paper will

discuss the predictions of this model for high density nuclear matter, including the spin

3

2
baryon resonances (decuplet). This is necessary, because the increasing nucleonic fermi

levels make the production of resonances energetically favorable at high densities. The

paper is structured as follows: Section II summarizes the nonlinear chiral SU(3) × SU(3)-

model. Section III gives the baryon meson interaction, with main focus on the baryon

meson-decuplet interaction and the constraints on the additional coupling constants. In

section IV the resulting equations of motions and thermodynamic observables in the mean

field approximation are discussed. Section V contains the results for dense hadronic matter,

followed by the conclusions.

II. LAGRANGIAN OF THE NONLINEAR CHIRAL SU(3) MODEL

We use a relativistic field theoretical model of baryons and mesons based on chiral sym-

metry and scale invariance to describe strongly interacting nuclear matter. In earlier work

the Lagrangian including the baryon octet, the spin-0 and spin-1 mesons has been developed

[13]. Here the additional inclusion of the spin-3

2
baryon decuplet for infinite nuclear matter

will be discussed. The general form of the Lagrangian then looks as follows:

L = Lkin +
∑

W=X,Y,V,A,u

LBW + LVP + Lvec + L0 + LSB. (1)

Lkin is the kinetic energy term, LBW includes the interaction terms of the different baryons

with the various spin-0 and spin-1 mesons. LVP contains the interaction terms of vector

mesons with pseudoscalar mesons. Lvec generates the masses of the spin-1 mesons through
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interactions with spin-0 mesons, and L0 gives the meson-meson interaction terms which

induce the spontaneous breaking of chiral symmetry. It also includes the scale breaking

logarithmic potential. Finally, LSB introduces an explicit symmetry breaking of the U(1)A

symmetry, the SU(3)V symmetry, and the chiral symmetry. These terms have been discussed

in detail in [13] and this shall not be repeated here. We will concentrate on the new terms

in LBW, which are due to adding the baryon resonances.

III. BARYON MESON INTERACTION

LBW consists of the interaction terms of the included baryons (octet and decuplet) and

the mesons (spin-0 and spin-1). For the spin-1

2
baryons the SU(3) structure of the couplings

to all mesons are the same, except for the difference in Lorentz space. For a general meson

field W they read

LOW = −
√

2gW
O8

(

αOW [BOBW ]F + (1 − αOW )[BOBW ]D
)

− gW
O1

1√
3
Tr(BOB)TrW , (2)

with [BOBW ]F := Tr(BOWB − BOBW ) and [BOBW ]D := Tr(BOWB + BOBW ) −
2

3
Tr(BOB)TrW . The different terms to be considered are those for the interaction of spin-1

2

baryons (B), with scalar mesons (W = X,O = 1), with vector mesons (W = Vµ,O = γµ),

with axial vector mesons (W = Aµ,O = γµγ5) and with pseudoscalar mesons (W = uµ,O =

γµγ5), respectively. For the spin-3

2
baryons (Dµ) one can construct a coupling term similar

to (2)

LDW = −
√

2gW
D8[D

µODµW ] − gW
D1[D

µODµ]TrW , (3)

where [DµODµW ] and [DµODµ] are obtained from coupling [1̄0]×[10]×[8] = [1]+[8]+[27]+

[64] and [1̄0] × [10] × [1] to an SU(3) singlet, respectively. In the following we focus on the

couplings of the baryons to the scalar mesons which dynamically generate the hadron masses

and vector mesons which effectively describe the short-range repulsion. For the pseudoscalar

mesons only a pseudovector coupling is possible, since in the nonlinear realization of chiral
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symmetry [13] they only appear in derivative terms. Pseudoscalar and axial mesons have a

vanishing expectation value at the mean field level, so that their coupling terms will not be

discussed in detail here.

Scalar Mesons

The baryons and the scalar mesons transform equally in the left and right subspace.

Therefore, in contrast to the linear realization of chiral symmetry, an f -type coupling is

allowed for the baryon-octet-meson interaction. In addition, it is possible to construct mass

terms for baryons and to couple them to chiral singlets. Since the current quark masses in

QCD are small compared to the hadron masses, we will use baryonic mass terms only as small

corrections to the dynamically generated masses. Furthermore a coupling of the baryons to

the dilaton field χ is also possible, but this will be discussed in a later publication. After

insertion of the vacuum matrix 〈X〉, (Eq.A4), one obtains the baryon masses as generated

by the vacuum expectation value (VEV) of the two meson fields:

mN = m0 −
1

3
gS

O8(4αOS − 1)(
√

2ζ − σ) (4)

mΛ = m0 −
2

3
gS

O8(αOS − 1)(
√

2ζ − σ)

mΣ = m0 +
2

3
gS

O8(αOS − 1)(
√

2ζ − σ)

mΞ = m0 +
1

3
gS

O8(2αOS + 1)(
√

2ζ − σ)

with m0 = gS
O1(

√
2σ + ζ)/

√
3. The parameters gS

O1, g
S
O8 and αOS can be used to fit the

baryon-octet masses to their experimental values. Besides the current quark mass terms

discussed in [13], no additional explicit symmetry breaking term is needed. Note that the

nucleon mass depends on the strange condensate ζ! For ζ = σ/
√

2 (i.e. fπ = fK), the

masses are degenerate, and the vacuum is SU(3)V -invariant. For the spin-3

2
baryons the

procedure is similar. If the vacuum matrix for the scalar condensates is inserted one obtains

the dynamically generated vacuum masses of the baryon decuplet

m∆ = gS
D

[

(3 − αDS)σ + αDS

√
2ζ
]

(5)
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mΣ∗ = gS
D

[

2σ +
√

2ζ
]

mΞ∗ = gS
D

[

(1 + αDS)σ + (2 − αDS)
√

2ζ
]

mΩ = gS
D

[

2αDSσ + (3 − αDS)
√

2ζ
]

The new parameters are connected to the parameters in (3) by gW
D8 = −

√
120(1 − αDS)gS

D

and gW
D1 =

√
90gS

D. gS
D and αDS can now be fixed to reproduce the masses of the baryon

decuplet. As in the case of the nucleon, the coupling of the ∆ to the strange condensate is

nonzero.

It is desirable to have an alternative way of baryon mass generation, where the nucleon

and the ∆ mass depend only on σ. For the nucleon this can be accomplished for example

by taking the limit αOS = 1 and gS
O1 =

√
6gS

O8. Then, the coupling constants between the

baryon octet and the two scalar condensates are related to the additive quark model. This

leaves only one coupling constant to adjust for the correct nucleon mass. For a fine-tuning

of the remaining masses, it is necessary to introduce an explicit symmetry breaking term,

that breaks the SU(3)-symmetry along the hypercharge direction. A possible term already

discussed in [12,14], which respects the Gell-Mann-Okubo mass relation, is

L∆m = −m1Tr(BB −BBS) −m2Tr(BSB), (6)

where Sa
b = −1

3
[
√

3(λ8)
a
b−δa

b ]. As in the first case, only three coupling constants, gNσ ≡ 3gS
O8,

m1 and m2, are sufficient to reproduce the experimentally known baryon masses. Explicitly,

the baryon masses have the values

mN = −gNσσ (7)

mΞ = −1

3
gNσσ − 2

3
gNσ

√
2ζ +m1 +m2

mΛ = −2

3
gNσσ − 1

3
gNσ

√
2ζ +

m1 + 2m2

3

mΣ = −2

3
gNσσ − 1

3
gNσ

√
2ζ +m1,

For the baryon decuplet the choice αDS = 0 yields coupling constants related to the additive

quark model. We introduce an explicit symmetry breaking proportional to the number of
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strange quarks for a given baryon species. Here we need only one additional parameter mDs

to obtain the masses of the baryon decuplet:

m∆ = g∆σ [3σ] (8)

mΣ∗ = g∆σ

[

2σ +
√

2ζ
]

+mDs

mΞ∗ = g∆σ

[

1σ + 2
√

2ζ
]

+ 2mDs

mΩ = g∆σ

[

0σ + 3
√

2ζ
]

+ 3mDs

For both versions of the baryon-meson interaction the parameters are fixed to yield the

baryon masses of the octet and the decuplet. The corresponding parameter set C2, has been

discussed in detail in [13].

Vector mesons

For the spin-1

2
baryons two independent interaction terms with spin-1 mesons can be

constructed, in analogy to the interaction of the baryon octet with the scalar mesons. They

correspond to the antisymmetric (f -type) and symmetric (d-type) couplings, respectively.

From the universality principle [15] and the vector meson dominance model one may conclude

that the d-type coupling should be small. Here αV = 1, i.e. pure f -type coupling, is used.

It was shown in [13], that a small admixture of d-type coupling allows for some fine-tuning

of the single-particle energy levels of nucleons in nuclei. As in the case of scalar mesons,

for gV
O1 =

√
6gV

O8, the strange vector field φµ ∼ sγµs does not couple to the nucleon. The

remaining couplings to the strange baryons are then determined by symmetry relations:

gNω = (4αV − 1)gV
O8

gΛω =
2

3
(5αV − 2)gV

O8

gΣω = 2αV g
V
O8

gΞω = (2αV − 1)gV
O8

gΛφ = −
√

2

3
(2αV + 1)gV

O8

gΣφ = −
√

2(2αV − 1)gV
O8

gΞφ = −2
√

2αV g
V
O8 .

(9)
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In the limit αV = 1, the relative values of the coupling constants are related to the additive

quark model via:

gΛω = gΣω = 2gΞω =
2

3
gNω = 2gV

O8 gΛφ = gΣφ =
gΞφ

2
=

√
2

3
gNω. (10)

Note that all coupling constants are fixed once e.g. gNω is specified. For the coupling of

the baryon resonances to the vector mesons we obtain the same Clebsch-Gordan coefficients

as for the coupling to the scalar mesons. This leads to the following relations between the

coupling constants:

g∆ω = (3 − αDV )gDV

gΣ∗ω = 2gDV

gΞ∗ω = (1 + αDV )gDV

gΩω = αDV gDV

g∆φ =
√

2αDV gDV

gΣ∗φ =
√

2gDV

gΞ∗φ =
√

2(2 − αDV )gDV

gΩφ =
√

2(3 − αDV )gDV .

(11)

In analogy to the octet case we set αDV = 0, so that the strange vector meson φ does

not couple to the ∆-baryon. The resulting coupling constants again obey the additive quark

model constraints:

g∆ω =
3

2
gΣ∗ω = 3gΞ∗ω = 3gDV gΩω = 0 (12)

gΩφ =
3

2
gΞ∗φ = 3gΣ∗φ =

√
2g∆ω g∆φ = 0

Hence all coupling constants of the baryon decuplet are again fixed if one overall coupling

gDV is specified. Since there is no vacuum restriction on the ∆-ω coupling, like in the case

of the scalar mesons, we have to consider different constraints. This will be discussed in

section V.

IV. MEAN-FIELD APPROXIMATION

The terms discussed so far involve the full quantum field operators. They cannot be

treated exactly. Hence, to investigate hadronic matter properties at finite baryon density we

adopt the mean-field approximation. This nonperturbative relativistic method is applied to
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solve approximately the nuclear many body problem by replacing the quantum field opera-

tors by their classical expectation values (for a recent review see [16]), i.e. the fluctuations

around the vacuum expectation values of the field operators are neglected:

σ(x) = 〈σ〉 + δσ → 〈σ〉 ≡ σ ; ζ(x) = 〈ζ〉+ δζ → 〈ζ〉 ≡ ζ (13)

ωµ(x) = 〈ω〉δ0µ + δωµ → 〈ω0〉 ≡ ω ; φµ(x) = 〈φ〉δ0µ + δφµ → 〈φ0〉 ≡ φ.

The fermions are treated as quantum mechanical single-particle operators. The derivative

terms can be neglected and only the time-like component of the vector mesons ω ≡ 〈ω0〉

and φ ≡ 〈φ0〉 survive if we assume homogeneous and isotropic infinite baryonic matter.

Additionally, due to parity conservation we have 〈πi〉 = 0. The baryon resonances are treated

as spin-1

2
particles with spin-3

2
degeneracy. After these approximations the Lagrangian (1)

reads

LBM + LBV = −
∑

i

ψi[giωγ0ω
0 + giφγ0φ

0 +m∗
i ]ψi

Lvec =
1

2
m2

ω

χ2

χ2
0

ω2 +
1

2
m2

φ

χ2

χ2
0

φ2 + g4
4(ω

4 + 2φ4)

V0 =
1

2
k0χ

2(σ2 + ζ2) − k1(σ
2 + ζ2)2 − k2(

σ4

2
+ ζ4) − k3χσ

2ζ

+ k4χ
4 +

1

4
χ4 ln

χ4

χ4
0

− δ

3
ln
σ2ζ

σ2
0ζ0

VSB =

(

χ

χ0

)2 [

m2
πfπσ + (

√
2m2

KfK − 1√
2
m2

πfπ)ζ

]

,

with the effective mass m∗
i of the baryon i, which is defined according to section III for

i = N,Λ,Σ,Ξ,∆,Σ∗,Ξ∗,Ω.

Now it is straightforward to write down the expression for the thermodynamical potential

of the grand canonical ensemble, Ω, per volume V at a given chemical potential µ and at

zero temperature:

Ω

V
= −Lvec − L0 −LSB − Vvac −

∑

i

γi

(2π)3

∫

d3k[E∗
i (k) − µ∗

i ] (14)

The vacuum energy Vvac (the potential at ρ = 0) has been subtracted in order to get a

vanishing vacuum energy. The γi denote the fermionic spin-isospin degeneracy factors. The
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single particle energies are E∗
i (k) =

√

k2
i +m∗

i
2 and the effective chemical potentials read

µ∗
i = µi − gωiω − gφiφ.

The mesonic fields are determined by extremizing Ω

V
(µ, T = 0):

∂(Ω/V )

∂χ
= −ω2m2

ω

χ

χ2
0

+ k0χ(σ2 + ζ2) − k3σ
2ζ +

(

4k4 + 1 + 4 ln
χ

χ0

− 4
δ

3
ln
σ2ζ

σ2
0ζ0

)

χ3 + (15)

+ 2
χ

χ2
0

[

m2
πfπσ + (

√
2m2

KfK − 1√
2
m2

πfπ)ζ

]

= 0

∂(Ω/V )

∂σ
= k0χ

2σ − 4k1(σ
2 + ζ2)σ − 2k2σ

3 − 2k3χσζ − 2
δχ4

3σ
+ (16)

+

(

χ

χ0

)2

m2
πfπ +

∑

i

∂m∗
i

∂σ
ρs

i = 0

∂(Ω/V )

∂ζ
= k0χ

2ζ − 4k1(σ
2 + ζ2)ζ − 4k2ζ

3 − k3χσ
2 − δχ4

3ζ
+ (17)

+

(

χ

χ0

)2 [√
2m2

KfK − 1√
2
m2

πfπ

]

+
∑

i

∂m∗
i

∂ζ
ρs

i = 0

∂(Ω/V )

∂ω
= −

(

χ

χ 0

)

m2
ωω − 4g4

4ω
3 +

∑

i

giω

ρi

= 0 (18)

∂(Ω/V )

∂φ
= −

(

χ

χ 0

)

m2
φφ− 8g4

4φ
3 +

∑

i

giφ

ρi

= 0 (19)

The scalar densities ρs
i and the vector densities ρi can be calculated analytically for the case

T = 0, yielding

ρs
i = γi

∫ d3k

(2π)3

m∗
i

E∗
i

=
γim

∗
i

4π2

[

kF iE
∗
F i −m∗2

i ln

(

kF i + E∗
F i

m∗
i

)]

(20)

ρi = γi

∫ kF i

0

d3k

(2π)3
=
γik

3
F i

6π2
. (21)

The energy density and the pressure follow from the Gibbs–Duhem relation, ǫ = Ω/V +

∑

i µiρ
i and p = −Ω/V . The Hugenholtz–van Hove theorem [17] yields the Fermi surfaces

as E∗(kF i) =
√

k2
F i +m∗2

i = µ∗
i .

V. RESULTS FOR DENSE NUCLEAR MATTER
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A. Parameters

Fixing of the parameters to vacuum and nuclear matter ground state properties was

discussed in detail in [13]. It has been shown that the obtained parameter sets describe

the nuclear matter saturation point, hadronic vacuum masses and properties of finite nuclei

reasonably well. The additional parameters here are the couplings of the baryon resonances

to the scalar and vector mesons. For the scalar mesons this is done by a fit to the vacuum

masses of the spin-3

2
baryons. The coupling of the baryon resonances to the spin-1 mesons

will be discussed later. These new parameters will not influence the results for normal

nuclear matter and finite nuclei.

B. Extrapolation to high densities

Once the parameters have been fixed to nuclear matter at ρ0, the condensates and hadron

masses at high baryon densities can be investigated, assuming that the change of the pa-

rameters of the effective theory with density are small. The behaviour of the fields and

the masses of the baryon octet have been investigated in [13]. It is found that the gluon

condensate χ stays nearly constant when the density increases. This implies that the ap-

proximation of a frozen glueball is reasonable. In these calculations the strange condensate

ζ is only reduced by about 10 percent from its vacuum expectation value. This is not sur-

prising since there are only nucleons in the system and the nucleon–ζ coupling is fairly weak.

The main effect occurs for the non–strange condensate σ: This field drops to 30 percent of

its vacuum expectation value at 4 times normal nuclear density, at even higher densities

the σ field saturates. The behaviour of the condensates is also reflected in the behaviour of

the baryon masses: The change of the scalar fields causes a change of the baryon masses in

the dense medium. Furthermore, the change of the baryon masses depends on the strange

quark content of the baryon. This is due to the different coupling of the baryons to the

non-strange and strange condensate. The masses of the vector mesons are shown in fig. 3.
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The corresponding terms in the lagrangean are discussed in [13]. These masses stay nearly

constant when the density is increased.

Now we discuss the inclusion of baryonic spin-3

2
resonances. How do they affect the

behaviour of dense hadronic matter? We consider the two parameter sets C1 and C2, which

satisfactorily describe finite nuclei [13]. As stated above, the main difference between the

two parameter sets is the coupling of the strange condensate to the nucleon and to the ∆.

In C2 this coupling is set to zero, while the nucleon and the ∆ couple to the ζ field in the

case of C1. Fig. 1 shows how the strength of the coupling of the strange condensate to the

nucleon and the ∆ depends on the vacuum expectation value of the strange condensate ζ0.

ζ0 in turn is a function of the kaon decay constant (ζ0 = 1√
2
(fπ − fK)). The results are

obtained by changing the value of fK , starting from parameter set C1. fK is expected to be

in the range of 105 to 125 MeV [18]. For infinite nuclear matter one obtains good fits for the

whole range of expected values. But when these parameter sets are used to describe finite

nuclei, satisfactory results are only obtained for a small range of values for fK , as can be

seen for the proton single particle levels in fig. 2: with decreasing fK the gap between the

single-particle levels 1h 9
2

and 3s 1
2

in 208Pb decreases such that e.g. for fK = 112MeV the

experimentally observed shell closure cannot be reproduced in the calculation. This result

is not very surprising, because the smaller value of fK leads to a stronger coupling of the

nucleon to the strange field, with a mass of mζ ≈ 1GeV . But it has been shown [8], that

for a reasonable description of finite nuclei the nucleon must mainly couple to a scalar field

with m ≈ 500 − 600MeV . The equation of state of dense hadronic matter for vanishing

strangeness is shown in Fig. 4. Here two C1 fits are compared, one with fk = 122, which

corresponds to the fit that has been tested to describe finite nuclei satisfactory in [13], and

a C1-type fit with fk = 116, as the minimum acceptable value extracted from Fig. 2. The

resulting values of coupling-constants to the nucleon are gNζ ≈ 0.49 for fK = 122 MeV and

gNζ ≈ 1.72 for fK = 116 MeV. For the ∆-baryon g∆ζ ≈ −2.2 and g∆ζ ≈ −0.59, respectively.

If these values are compared to the couplings to the non-strange condensate (which is around

−10 for the nucleon and the ∆ in both cases) one observes that the mass difference between
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nucleon and ∆ is due to the different coupling to the strange condensate.

Furthermore the resulting equation of state for parameter set C2 is plotted. Here the

nucleon and ∆-mass do not depend on the strange condensate. Fig. 4 shows two main

results: The resulting EOS does not change significantly if fK in the C1-fits is varied within

the reasonable range discussed above. In the following we refer to the C1-fit of [13] with

fK = 122MeV .

However, the different ways of nucleon and ∆ mass generation lead to drastic differences in

the resulting equations of state:

A pure σ-dependence of the masses of the nonstrange baryons (C2) leads to an equation

of state which is strongly influenced by the production of resonances at high densities. This

is not the case when both masses are partially generated by the strange condensate (C1),

Fig. 4. In both fits the coupling of the ∆ to the ω-meson (g∆ω) has been set equal to gNω.

The very different behaviour of the EOS can be understood from the ratio of the effective

∆-mass to the effective nucleon-mass, Fig. 5. If the coupling of the nucleon to the ζ field

is set to zero (C2), the mass ratio stays at the constant value m∆

mN

= g∆σ

gNσ

≈ 1.31. However,

if the nucleon couples to the strange condensate (C1), the mass ratio m∆

mN

increases with

density, due to the different coupling of the nucleon and the ∆ to the strange condensate

ζ . The ∆ does not feel less scalar attraction - the coupling to the σ field is the same for

the nonstrange baryons. However, the mass of the ∆ does not drop as fast as in the case of

pure σ-couplings, and hence the production of baryon resonances is less favorable at high

densities, Fig. 6.

Both coupling constants of the ∆-baryon are freely adjustable in the RMF models

[2,19,20]. In the chiral model, which incorporates dynamical mass generation, the scalar

couplings are fixed by the corresponding vacuum masses. If explicit symmetry breaking for

the baryon mass generation is neglected, then the scalar couplings are fixed by the vacuum

alone. To investigate the influence of the coupling to the strange condensate ζ , small ex-

plicitly symmetry breaking terms m1, m2 are used. This model behaves similar as the RMF
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models with r = g∆σ

gNσ

= m∆

mN

.

The remaining problem is the coupling of the resonances to the vector mesons. The

coupling constants can be restricted by the requirement that resonances are absent in the

ground state of normal nuclear matter. Furthermore possible secondary minimua in the

nuclear equation of state should lie above the saturation energy of normal nuclear matter.

QCD sum-rule calculations suggest [18] that the net attraction for ∆‘s in nuclear matter

is larger than that of the nucleon. From these constraints a ’window’ of possible parameter

sets g∆σ, g∆ω has been extracted [20]. In the chiral model one then obtains for each type

of mass generation only a small region of possible values for g∆ω. The ∆ − ω coupling in

Fig.7 is in this range. Pure σ-coupling (C2) of the non-strange baryons yields a range of

coupling constants rv = g∆ω

gN ω
between 0.91 < rv < 1. For a non-vanishing ζ-coupling one

obtains 0.68 < rv < 1. A smaller value of the ratio rv (less repulsion), leads to higher ∆-

probabilities and to softer equations of state. Due to this freedom in the coupling of the

resonances to the vector mesons the equation of state cannot be predicted unambigiously

from the chiral model. Here additional input from experiments are necessary to pin down

the equation of state.

Finally we address the question, whether at very high densities the anti-nucleon potentials

become overcritical. That means the potential for anti-nucleons may become larger than 2

mNc and nucleon- anti-nucleon pairs may be spontaneously emitted [21]. The nucleon and

anti-nucleon potentials in the chiral model are shown as function of density (Fig. 8) for

parameter set C1 with and without quartic vector self-interaction. The latter is to obtain

reasonable compressibility in the chiral model [13] and is in agreement with the principle of

naturalness stated in [8]. From that the anti-nucleon potentials are predicted not to turn

overcritical at densities below 12ρ0 in the chiral model (Fig. 8 left). Earlier calculations in

RMF-models [21] did not include the higher order vector self-interactions. Then spontaneous

anti-nucleon production occurs around 4− 6ρ0. This also happens in the chiral model if the

quartic-terms would be neglected (Fig. 8 right). The critical density shifts to even higher

values, if the equation of state is softened by the baryon resonances, as can be seen in Fig. 9.
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Hence, the chiral mean field model does not predict overcriticality for reasonable densities.

VI. CONCLUSION

Spin-3

2
-baryon resonances can be included consistently in the nonlinear chiral SU(3)-

model. The coupling constants of the baryon resonances to the scalar mesons are fixed by

the vacuum masses. Two different ways of mass generation were investigated. It is found

that they lead to very different predictions for the resulting equation of state of non-strange

nuclear matter. The coupling of the baryon resonances to the vector mesons cannot be

fixed. The allowed range of this coupling constant is restricted by requireing that possible

density isomers are not absolutely stable, that there are no ∆’s in the nuclear matter ground

state and by QCD sum-rule induced assumption that the net attraction of ∆’s in nuclear

matter is larger than that for nucleons. Nevertheless, the behaviour of non-strange nuclear

matter cannot be predicted unambigiously within the chiral SU(3)-model, so that further

experimental input on ∆-production in high density systems and theoretical investigations

on how the resonance production influences the observables in these systems (neutron stars,

heavy ion-collisions) is needed. For both cases calculations are under way [22–24].
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APPENDIX A:

The SU(3) matrices of the hadrons are (suppressing the Lorentz indices)
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X =
1√
2
σaλa =

















(a0
0 + σ)/

√
2 a+

0 κ+

a−0 (−a0
0 + σ)

√
2 κ0

κ− κ0 ζ

















P =
1√
2
πaλ

a =





















1√
2

(

π0 + η8
√

1+2 w2

)

π+ 2 K+

w+1

π− 1√
2

(

−π0 + η8
√

1+2 w2

)

2 K0

w+1

2 K−

w+1
2 K

0

w+1
− η8

√
2√

1+2 w2





















(A1)

V =
1√
2
vaλa =

















(ρ0
0 + ω)/

√
2 ρ+

0 K∗+

ρ−0 (−ρ0
0 + ω)/

√
2 K∗0

K∗− K∗0 φ

















(A2)

B =
1√
2
baλa =

















Σ0
√

2
+ Λ0

√
6

Σ+ p

Σ− −Σ0
√

2
+ Λ0

√
6

n

Ξ− Ξ0 −2 Λ0
√

6

















(A3)

for the scalar (X), pseudoscalar(P ), vector (V ), baryon (B) and similarly for the axial vector

meson fields. A pseudoscalar chiral singlet Y =
√

2/3η0 11 can be added separately, since only

an octet is allowed to enter the exponential.

The notation follows the convention of the Particle Data Group (PDG), [25], though we

are aware of the difficulties to directly identify the scalar mesons with the physical particles

[26]. However, note that there is increasing evidence that supports the existence of a low-

mass, broad scalar resonance, the σ(560)-meson, as well as a light strange scalar meson, the

κ(900) (see [27] and references therein).

The masses of the various hadrons are generated through their couplings to the scalar

condensates, which are produced via spontaneous symmetry breaking in the sector of the

scalar fields. Of the 9 scalar mesons in the matrix X only the vacuum expectation values of

the components proportional to λ0 and to the hypercharge Y ∼ λ8 are non-vanishing, and

the vacuum expectation value 〈X〉 reduces to:
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〈X〉 =
1√
2
(σ0λ0 + σ8λ8) ≡ diag (

σ√
2
,
σ√
2
, ζ), (A4)

in order to preserve parity invariance and assuming, for simplicity, SU(2) symmetry1 of the

vacuum.

1This implies that isospin breaking effects will not occur, i.e., all hadrons of the same isospin

multiplet will have identical masses. The electromagnetic mass breaking is neglected.

17



REFERENCES

[1] J. D. Walecka, Ann. Phys. (N.Y.) 83, 49 (1974).

[2] B. D. Serot and J. D. Walecka, Adv. Nucl. Phys. 79, 3612 (1997).

[3] J. Boguta and A. R. Bodmer, Nucl. Phys. A 292, 413 (1977).

[4] J. Boguta and H. Stoecker, Phys. Lett. B 120, 289 (1983).

[5] R. J. Furnstahl, C. E. Price, and G. E. Walker, Phys. Rev. C 36, 2590 (1987).

[6] A. K. Kerman and L. D. Miller, in Proceedings of the Second Relativistic Heavy Ion

Summer Study (Berkeley, LBL, 1974).

[7] R. J. Furnstahl and B. D. Serot, Phys. Rev. C 47, 2338 (1993).

[8] R. J. Furnstahl, B. D. Serot, and H. B. Tang, Nucl. Phys. A 598, 539 (1996).

[9] J. Schechter, Phys. Rev. D 21, 3393 (1980).

[10] E. K. Heide, S. Rudaz, and P. J. Ellis, Nucl. Phys. A 571, 713 (1994).

[11] J. Schaffner, C. B. Dover, A. Gal, C. Greiner, and H. Stöcker, Phys. Rev. Lett. 71, 1328
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FIG. 1. Coupling of the nucleon and the ∆ to the non-strange (σ) and strange (ζ) scalar

condensates as a function of the kaon decay constant fK . For fK ≈ 115− 125MeV the coupling of

the nucleon and the ∆ to the non-strange scalar field σ are nearly equal. The coupling strength to

the strange scalar field are different in sign. This results in the mass difference of ∆m ≈ 300MeV

in the vacuum.
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FIG. 2. Single particle energie levels for protons in Pb208 for parameter sets with different

values of the kaon decay constant fk (in MeV ). The smaller the decay constant is chosen, the

more the gap between the levels 1h 9
2

and 3s 1
2

decreases. The parameter sets were obtained by just

variing fk in C1.
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FIG. 3. Vector meson masses as a function of density.
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FIG. 4. Equation of state for infinite nuclear matter for the parameter sets C1

(mN = mN (σ, ζ)) and C2 (mN = mN (σ)). In the left picture resonances are neglected while

they are included in the right picture. If the strange condensates couples to the nucleon the

influence of the ∆ resonances on the equation of state is much weaker.
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FIG. 6. Relative densities of nucleons and ∆‘s for various parameter sets. The production

rate of ∆’s depends strongly on the parameter set, i.e. on the strength of the nucleon-ζ and ∆-ζ

coupling.
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. For the C2-fit the value of rv should not be less than 0.91 to avoid the density isomer

being absolutely stable. For C2, rv must be larger than 0.68.
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FIG. 8. Nucleon and anti-nucleon energy at ~p = 0 as a function of baryon density. On the left

hand side parameter set C1 was use, while on the right hand side the coupling constant g4 for the

quartic vector meson interaction was set to zero.
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FIG. 9. Nucleon and anti-nucleon energy at ~p = 0 as a function of baryon density using

paramter set C1 with rv = 1 and rv = 0.68. Lower values of the ∆ − ω-coupling lead to a

significant change of the equation of state (see fig.7) and to an increase of the critical density to
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