39 research outputs found
A pan-European epidemiological study reveals honey bee colony survival depends on beekeeper education and disease control
Reports of honey bee population decline has spurred many national efforts to understand the extent of the problem and to identify causative or associated factors. However, our collective understanding of the factors has been hampered by a lack of joined up trans-national effort. Moreover, the impacts of beekeeper knowledge and beekeeping management practices have often been overlooked, despite honey bees being a managed pollinator. Here, we established a standardised active monitoring network for 5 798 apiaries over two consecutive years to quantify honey bee colony mortality across 17 European countries. Our data demonstrate that overwinter losses ranged between 2% and 32%, and that high summer losses were likely to follow high winter losses. Multivariate Poisson regression models revealed that hobbyist beekeepers with small apiaries and little experience in beekeeping had double the winter mortality rate when compared to professional beekeepers. Furthermore, honey bees kept by professional beekeepers never showed signs of disease, unlike apiaries from hobbyist beekeepers that had symptoms of bacterial infection and heavy Varroa infestation. Our data highlight beekeeper background and apicultural practices as major drivers of honey bee colony losses. The benefits of conducting trans-national monitoring schemes and improving beekeeper training are discussed
A Solve-RD ClinVar-based reanalysis of 1522 index cases from ERN-ITHACA reveals common pitfalls and misinterpretations in exome sequencing
Purpose
Within the Solve-RD project (https://solve-rd.eu/), the European Reference Network for Intellectual disability, TeleHealth, Autism and Congenital Anomalies aimed to investigate whether a reanalysis of exomes from unsolved cases based on ClinVar annotations could establish additional diagnoses. We present the results of the “ClinVar low-hanging fruit” reanalysis, reasons for the failure of previous analyses, and lessons learned.
Methods
Data from the first 3576 exomes (1522 probands and 2054 relatives) collected from European Reference Network for Intellectual disability, TeleHealth, Autism and Congenital Anomalies was reanalyzed by the Solve-RD consortium by evaluating for the presence of single-nucleotide variant, and small insertions and deletions already reported as (likely) pathogenic in ClinVar. Variants were filtered according to frequency, genotype, and mode of inheritance and reinterpreted.
Results
We identified causal variants in 59 cases (3.9%), 50 of them also raised by other approaches and 9 leading to new diagnoses, highlighting interpretation challenges: variants in genes not known to be involved in human disease at the time of the first analysis, misleading genotypes, or variants undetected by local pipelines (variants in off-target regions, low quality filters, low allelic balance, or high frequency).
Conclusion
The “ClinVar low-hanging fruit” analysis represents an effective, fast, and easy approach to recover causal variants from exome sequencing data, herewith contributing to the reduction of the diagnostic deadlock
Contrôle spatial de la division cellulaire chez les plantes : rôle des protéines TRM6-TRM7-TRM8 d’Arabidopsis thaliana dans la formation de l’anneau de préprophase
Plant cells are embedded within a semi-rigid pecto-cellulosic cell wall that prevents cell migration. As a consequence, three-dimensional cellular organization of tissues mostly results from polarized cell division, since new cells remain in place after mitosis with no possibility for subsequent relocation. In land plants, the division plane is determined pre-mitotically, during the G2 to M phase transition by the preprophase band (PPB), a transient, premitotic microtubule array. The molecular pathways leading to preprophase band formation are still largely unknown. Our team has identified a regulatory complex, the TTP complex, composed of TON1, TRM and a Protein Phosphatase 2A complex with FASS as the regulatory subunit. Both TON1 and FASS have been shown to be involved in cortical microtubules organization during both interphase and PPB formation. The TRM super family is a newly identified protein family composed of 34 members, some of which are microtubule-associated proteins able to recruit TON1 and FASS to the microtubules. Based on TRM expression profiles and preliminary genetic analysis, we hypothesized that some TRMs could have a role in interphase, while others could be involved in PPB formation. My project was to identify and characterize TRMs specifically involved in PPB formation, if any. Transcriptomic analysis using the Genevestigator tool revealed that one TRM gene, TRM7, has a peak of expression at mitosis. TRM7 promoter GUS fusion analysis confirmed that TRM7 is expressed in all dividing tissues and in situ hybridizations of shoot apical meristems revealed a patchy pattern of expression, typical of cell cycle-regulated genes. Remarkably, the genomic TRM7-3xYFP fusion is only expressed at the G2/M transition where it localizes to the PPB, persists beyond PPB degradation until the beginning of metaphase and then disappears. To our knowledge, this makes TRM7 the only PPB-specific marker identified in plants so far, since all other PPB-associated markers label others structures as well, both interphasic or mitotic. TRM7 is part of the TRM6-7-8 sub-family, which share 74% of similarity. Phenotypic analysis of the trm7 and trm6 trm7 trm8 triple mutant revealed a major role of this sub-group in PPB formation. Almost half trm7 cells and all trm6 trm7 trm8 cells displayed an abnormal preprophase stage, the vast majority of the triple mutant cells dividing without PPB. Surprisingly, the triple mutant phenotype is rather mild compare to the severe developmental syndrome of PPB-lacking ton1 or fass plants. Moreover, although often shifted, division plane positioning is far from being fully randomized as in ton1 and fass mutants. Our results show that, for the first time, we have fully uncoupled the mitotic function of the TTP complex from its interphasic function, contrarily to other TTP mutants analyzed so far, where division and interphase defects are indistinguishable. Moreover, these findings question the central role of the PPB in division plane positioning. All TTP components share similarities with animal proteins assembled within a complex at the centrosome. In a side project, we studied the conservation of protein interactions within the animal complex and were able to find cross-interactions between animal and plant proteins in yeast two-hybrid experiments.Les cellules végétales sont entourées d’une paroi pecto-cellulosique rigide, soudant les cellules les unes aux autres et empêchant toute migration. Lors de la mitose, le positionnement du plan de division est donc un processus fondamental dans l’organisation des tissus puisque les cellules nouvellement formées restent à leur position initiale après la cytokinèse. Chez les plantes terrestres, le plan de division est déterminé lors de la transition G2/M du cycle cellulaire par l’anneau de préprophase (PPB), une structure transitoire corticale de microtubules. Les mécanismes mis en jeu pour la formation de la PPB sont encore inconnus. L’équipe dans laquelle j’ai effectué ma thèse a identifié un complexe régulateur, le complexe TTP, composé de TON1, de la famille de protéines TON1-Recruiting-Motif (TRMs) et d’une phosphatase de type 2A où FASS est la sous-unité régulatrice. TON1 et FASS sont impliquées dans l’organisation des microtubules corticaux en interphase, et sont indispensables à la formation de la PPB. La famille des protéines TRMs, identifiée récemment, est composée de 34 membres, dont certains sont capables de se lier aux microtubules et de recruter TON1 et FASS au cytosquelette. Les profils d’expression des TRMs et les analyses génétiques préliminaires suggèrent que certaines auraient un rôle en interphase, alors que d’autres pourraient être impliquées dans la formation de la PPB. Mon projet était d’identifier et de caractériser, si elles existent, les TRMs impliquées spécifiquement dans la formation de la PPB. L’analyse des données de transcriptome a révélé qu’un des gènes de la famille TRM, le gène TRM7, présente un pic d’expression en mitose. Nous avons d'abord montré que TRM7 est spécifiquement exprimée dans les tissus en division. L’utilisation d’une fusion génomique TRM7-3xYpet indique d'autre part que la protéine TRM7 n’est exprimée qu’au stade G2/M. Elle est localisée à la PPB et disparaît en début de métaphase, peu après dépolymérisation de la PPB. TRM7 est ainsi le seul marqueur spécifique de la PPB identifié à ce jour chez les plantes, puisque toutes les autres protéines localisées à la PPB marquent également les autres structures mitotiques ou le cytosquelette d’interphase. TRM7 fait partie d’un sous-groupe de trois TRM partageant environ 74% de similarité de séquence. L’analyse phénotypique du mutant trm7, ainsi que celui du triple mutant trm6 trm7 trm8 a montré que ce sous-groupe de protéines joue un rôle majeur dans la formation de la PPB. Près de la moitié des cellules du mutant trm7 présentent un stade préprophase aberrant alors que 100% des cellules du triple mutant au stade G2/M sont affectées, la très grande majorité se divisant sans former de PPB. Étonnamment, la morphologie de ces mutants est peu perturbée et le phénotype n’est en rien comparable au syndrome développemental sévère des mutants ton1 ou fass dépourvus de PPB. De plus, les plans de division ne sont pas aléatoires comme c’est le cas pour les mutants ton1 et fass. Nos résultats permettent donc d'apporter une nouvelle lumière sur le rôle de la PPB dans la détermination du plan de division. Pour la première fois, grâce au triple mutant trm6 trm7 trm8, nous avons réussi à découpler les fonctions interphasiques de la fonction mitotique du complexe TTP, ce qui était jusqu’alors impossible chez les mutants ton1 ou fass où les défauts en interphase et les défauts dus à l’absence de PPB étaient indissociables. Tous les composants du complexe TTP partageant des similarités avec des protéines centrosomales animales faisant partie du même complexe, nous avons exploré dans un projet annexe, la conservation des interactions au sein du complexe animal. Nous avons pu mettre en évidence, grâce au système double-hybride chez la levure, des interactions entre protéines animales et protéines végétales
Spatial control of cell division in plants : TRM6-TRM7-TRM8 proteins and the formation of preprophase band in Arabidopsis thaliana
Les cellules végétales sont entourées d’une paroi pecto-cellulosique rigide, soudant les cellules les unes aux autres et empêchant toute migration. Lors de la mitose, le positionnement du plan de division est donc un processus fondamental dans l’organisation des tissus puisque les cellules nouvellement formées restent à leur position initiale après la cytokinèse. Chez les plantes terrestres, le plan de division est déterminé lors de la transition G2/M du cycle cellulaire par l’anneau de préprophase (PPB), une structure transitoire corticale de microtubules. Les mécanismes mis en jeu pour la formation de la PPB sont encore inconnus. L’équipe dans laquelle j’ai effectué ma thèse a identifié un complexe régulateur, le complexe TTP, composé de TON1, de la famille de protéines TON1-Recruiting-Motif (TRMs) et d’une phosphatase de type 2A où FASS est la sous-unité régulatrice. TON1 et FASS sont impliquées dans l’organisation des microtubules corticaux en interphase, et sont indispensables à la formation de la PPB. La famille des protéines TRMs, identifiée récemment, est composée de 34 membres, dont certains sont capables de se lier aux microtubules et de recruter TON1 et FASS au cytosquelette. Les profils d’expression des TRMs et les analyses génétiques préliminaires suggèrent que certaines auraient un rôle en interphase, alors que d’autres pourraient être impliquées dans la formation de la PPB. Mon projet était d’identifier et de caractériser, si elles existent, les TRMs impliquées spécifiquement dans la formation de la PPB. L’analyse des données de transcriptome a révélé qu’un des gènes de la famille TRM, le gène TRM7, présente un pic d’expression en mitose. Nous avons d'abord montré que TRM7 est spécifiquement exprimée dans les tissus en division. L’utilisation d’une fusion génomique TRM7-3xYpet indique d'autre part que la protéine TRM7 n’est exprimée qu’au stade G2/M. Elle est localisée à la PPB et disparaît en début de métaphase, peu après dépolymérisation de la PPB. TRM7 est ainsi le seul marqueur spécifique de la PPB identifié à ce jour chez les plantes, puisque toutes les autres protéines localisées à la PPB marquent également les autres structures mitotiques ou le cytosquelette d’interphase. TRM7 fait partie d’un sous-groupe de trois TRM partageant environ 74% de similarité de séquence. L’analyse phénotypique du mutant trm7, ainsi que celui du triple mutant trm6 trm7 trm8 a montré que ce sous-groupe de protéines joue un rôle majeur dans la formation de la PPB. Près de la moitié des cellules du mutant trm7 présentent un stade préprophase aberrant alors que 100% des cellules du triple mutant au stade G2/M sont affectées, la très grande majorité se divisant sans former de PPB. Étonnamment, la morphologie de ces mutants est peu perturbée et le phénotype n’est en rien comparable au syndrome développemental sévère des mutants ton1 ou fass dépourvus de PPB. De plus, les plans de division ne sont pas aléatoires comme c’est le cas pour les mutants ton1 et fass. Nos résultats permettent donc d'apporter une nouvelle lumière sur le rôle de la PPB dans la détermination du plan de division. Pour la première fois, grâce au triple mutant trm6 trm7 trm8, nous avons réussi à découpler les fonctions interphasiques de la fonction mitotique du complexe TTP, ce qui était jusqu’alors impossible chez les mutants ton1 ou fass où les défauts en interphase et les défauts dus à l’absence de PPB étaient indissociables. Tous les composants du complexe TTP partageant des similarités avec des protéines centrosomales animales faisant partie du même complexe, nous avons exploré dans un projet annexe, la conservation des interactions au sein du complexe animal. Nous avons pu mettre en évidence, grâce au système double-hybride chez la levure, des interactions entre protéines animales et protéines végétales.Plant cells are embedded within a semi-rigid pecto-cellulosic cell wall that prevents cell migration. As a consequence, three-dimensional cellular organization of tissues mostly results from polarized cell division, since new cells remain in place after mitosis with no possibility for subsequent relocation. In land plants, the division plane is determined pre-mitotically, during the G2 to M phase transition by the preprophase band (PPB), a transient, premitotic microtubule array. The molecular pathways leading to preprophase band formation are still largely unknown. Our team has identified a regulatory complex, the TTP complex, composed of TON1, TRM and a Protein Phosphatase 2A complex with FASS as the regulatory subunit. Both TON1 and FASS have been shown to be involved in cortical microtubules organization during both interphase and PPB formation. The TRM super family is a newly identified protein family composed of 34 members, some of which are microtubule-associated proteins able to recruit TON1 and FASS to the microtubules. Based on TRM expression profiles and preliminary genetic analysis, we hypothesized that some TRMs could have a role in interphase, while others could be involved in PPB formation. My project was to identify and characterize TRMs specifically involved in PPB formation, if any. Transcriptomic analysis using the Genevestigator tool revealed that one TRM gene, TRM7, has a peak of expression at mitosis. TRM7 promoter GUS fusion analysis confirmed that TRM7 is expressed in all dividing tissues and in situ hybridizations of shoot apical meristems revealed a patchy pattern of expression, typical of cell cycle-regulated genes. Remarkably, the genomic TRM7-3xYFP fusion is only expressed at the G2/M transition where it localizes to the PPB, persists beyond PPB degradation until the beginning of metaphase and then disappears. To our knowledge, this makes TRM7 the only PPB-specific marker identified in plants so far, since all other PPB-associated markers label others structures as well, both interphasic or mitotic. TRM7 is part of the TRM6-7-8 sub-family, which share 74% of similarity. Phenotypic analysis of the trm7 and trm6 trm7 trm8 triple mutant revealed a major role of this sub-group in PPB formation. Almost half trm7 cells and all trm6 trm7 trm8 cells displayed an abnormal preprophase stage, the vast majority of the triple mutant cells dividing without PPB. Surprisingly, the triple mutant phenotype is rather mild compare to the severe developmental syndrome of PPB-lacking ton1 or fass plants. Moreover, although often shifted, division plane positioning is far from being fully randomized as in ton1 and fass mutants. Our results show that, for the first time, we have fully uncoupled the mitotic function of the TTP complex from its interphasic function, contrarily to other TTP mutants analyzed so far, where division and interphase defects are indistinguishable. Moreover, these findings question the central role of the PPB in division plane positioning. All TTP components share similarities with animal proteins assembled within a complex at the centrosome. In a side project, we studied the conservation of protein interactions within the animal complex and were able to find cross-interactions between animal and plant proteins in yeast two-hybrid experiments
Contrôle spatial de la division cellulaire chez les plantes (rôle des protéines TRM6-TRM7-TRM8 d'Arabidopsis thaliana dans la formation de l'anneau de préprophase)
Les cellules végétales sont entourées d une paroi pecto-cellulosique rigide, soudant les cellules les unes aux autres et empêchant toute migration. Lors de la mitose, le positionnement du plan de division est donc un processus fondamental dans l organisation des tissus puisque les cellules nouvellement formées restent à leur position initiale après la cytokinèse. Chez les plantes terrestres, le plan de division est déterminé lors de la transition G2/M du cycle cellulaire par l anneau de préprophase (PPB), une structure transitoire corticale de microtubules. Les mécanismes mis en jeu pour la formation de la PPB sont encore inconnus. L équipe dans laquelle j ai effectué ma thèse a identifié un complexe régulateur, le complexe TTP, composé de TON1, de la famille de protéines TON1-Recruiting-Motif (TRMs) et d une phosphatase de type 2A où FASS est la sous-unité régulatrice. TON1 et FASS sont impliquées dans l organisation des microtubules corticaux en interphase, et sont indispensables à la formation de la PPB. La famille des protéines TRMs, identifiée récemment, est composée de 34 membres, dont certains sont capables de se lier aux microtubules et de recruter TON1 et FASS au cytosquelette. Les profils d expression des TRMs et les analyses génétiques préliminaires suggèrent que certaines auraient un rôle en interphase, alors que d autres pourraient être impliquées dans la formation de la PPB. Mon projet était d identifier et de caractériser, si elles existent, les TRMs impliquées spécifiquement dans la formation de la PPB. L analyse des données de transcriptome a révélé qu un des gènes de la famille TRM, le gène TRM7, présente un pic d expression en mitose. Nous avons d'abord montré que TRM7 est spécifiquement exprimée dans les tissus en division. L utilisation d une fusion génomique TRM7-3xYpet indique d'autre part que la protéine TRM7 n est exprimée qu au stade G2/M. Elle est localisée à la PPB et disparaît en début de métaphase, peu après dépolymérisation de la PPB. TRM7 est ainsi le seul marqueur spécifique de la PPB identifié à ce jour chez les plantes, puisque toutes les autres protéines localisées à la PPB marquent également les autres structures mitotiques ou le cytosquelette d interphase. TRM7 fait partie d un sous-groupe de trois TRM partageant environ 74% de similarité de séquence. L analyse phénotypique du mutant trm7, ainsi que celui du triple mutant trm6 trm7 trm8 a montré que ce sous-groupe de protéines joue un rôle majeur dans la formation de la PPB. Près de la moitié des cellules du mutant trm7 présentent un stade préprophase aberrant alors que 100% des cellules du triple mutant au stade G2/M sont affectées, la très grande majorité se divisant sans former de PPB. Étonnamment, la morphologie de ces mutants est peu perturbée et le phénotype n est en rien comparable au syndrome développemental sévère des mutants ton1 ou fass dépourvus de PPB. De plus, les plans de division ne sont pas aléatoires comme c est le cas pour les mutants ton1 et fass. Nos résultats permettent donc d'apporter une nouvelle lumière sur le rôle de la PPB dans la détermination du plan de division. Pour la première fois, grâce au triple mutant trm6 trm7 trm8, nous avons réussi à découpler les fonctions interphasiques de la fonction mitotique du complexe TTP, ce qui était jusqu alors impossible chez les mutants ton1 ou fass où les défauts en interphase et les défauts dus à l absence de PPB étaient indissociables. Tous les composants du complexe TTP partageant des similarités avec des protéines centrosomales animales faisant partie du même complexe, nous avons exploré dans un projet annexe, la conservation des interactions au sein du complexe animal. Nous avons pu mettre en évidence, grâce au système double-hybride chez la levure, des interactions entre protéines animales et protéines végétales.Plant cells are embedded within a semi-rigid pecto-cellulosic cell wall that prevents cell migration. As a consequence, three-dimensional cellular organization of tissues mostly results from polarized cell division, since new cells remain in place after mitosis with no possibility for subsequent relocation. In land plants, the division plane is determined pre-mitotically, during the G2 to M phase transition by the preprophase band (PPB), a transient, premitotic microtubule array. The molecular pathways leading to preprophase band formation are still largely unknown. Our team has identified a regulatory complex, the TTP complex, composed of TON1, TRM and a Protein Phosphatase 2A complex with FASS as the regulatory subunit. Both TON1 and FASS have been shown to be involved in cortical microtubules organization during both interphase and PPB formation. The TRM super family is a newly identified protein family composed of 34 members, some of which are microtubule-associated proteins able to recruit TON1 and FASS to the microtubules. Based on TRM expression profiles and preliminary genetic analysis, we hypothesized that some TRMs could have a role in interphase, while others could be involved in PPB formation. My project was to identify and characterize TRMs specifically involved in PPB formation, if any. Transcriptomic analysis using the Genevestigator tool revealed that one TRM gene, TRM7, has a peak of expression at mitosis. TRM7 promoter GUS fusion analysis confirmed that TRM7 is expressed in all dividing tissues and in situ hybridizations of shoot apical meristems revealed a patchy pattern of expression, typical of cell cycle-regulated genes. Remarkably, the genomic TRM7-3xYFP fusion is only expressed at the G2/M transition where it localizes to the PPB, persists beyond PPB degradation until the beginning of metaphase and then disappears. To our knowledge, this makes TRM7 the only PPB-specific marker identified in plants so far, since all other PPB-associated markers label others structures as well, both interphasic or mitotic. TRM7 is part of the TRM6-7-8 sub-family, which share 74% of similarity. Phenotypic analysis of the trm7 and trm6 trm7 trm8 triple mutant revealed a major role of this sub-group in PPB formation. Almost half trm7 cells and all trm6 trm7 trm8 cells displayed an abnormal preprophase stage, the vast majority of the triple mutant cells dividing without PPB. Surprisingly, the triple mutant phenotype is rather mild compare to the severe developmental syndrome of PPB-lacking ton1 or fass plants. Moreover, although often shifted, division plane positioning is far from being fully randomized as in ton1 and fass mutants. Our results show that, for the first time, we have fully uncoupled the mitotic function of the TTP complex from its interphasic function, contrarily to other TTP mutants analyzed so far, where division and interphase defects are indistinguishable. Moreover, these findings question the central role of the PPB in division plane positioning. All TTP components share similarities with animal proteins assembled within a complex at the centrosome. In a side project, we studied the conservation of protein interactions within the animal complex and were able to find cross-interactions between animal and plant proteins in yeast two-hybrid experiments.PARIS11-SCD-Bib. électronique (914719901) / SudocSudocFranceF
The Arabidopsis TRM1-TON1 interaction reveals a recruitment network common to plant cortical microtubule arrays and eukaryotic centrosomes.
International audienceLand plant cells assemble microtubule arrays without a conspicuous microtubule organizing center like a centrosome. In Arabidopsis thaliana, the TONNEAU1 (TON1) proteins, which share similarity with FOP, a human centrosomal protein, are essential for microtubule organization at the cortex. We have identified a novel superfamily of 34 proteins conserved in land plants, the TON1 Recruiting Motif (TRM) proteins, which share six short conserved motifs, including a TON1-interacting motif present in all TRMs. An archetypal member of this family, TRM1, is a microtubule-associated protein that localizes to cortical microtubules and binds microtubules in vitro. Not all TRM proteins can bind microtubules, suggesting a diversity of functions for this family. In addition, we show that TRM1 interacts in vivo with TON1 and is able to target TON1 to cortical microtubules via its C-terminal TON1 interaction motif. Interestingly, three motifs of TRMs are found in CAP350, a human centrosomal protein interacting with FOP, and the C-terminal M2 motif of CAP350 is responsible for FOP recruitment at the centrosome. Moreover, we found that TON1 can interact with the human CAP350 M2 motif in yeast. Taken together, our results suggest conservation of eukaryotic centrosomal components in plant cells