11,651 research outputs found

    Vacuum fluctuations and the thermodynamics of chiral models

    Full text link
    We consider the thermodynamics of chiral models in the mean-field approximation and discuss the relevance of the (frequently omitted) fermion vacuum loop. Within the chiral quark-meson model and its Polyakov loop extended version, we show that the fermion vacuum fluctuations can change the order of the phase transition in the chiral limit and strongly influence physical observables. We compute the temperature-dependent effective potential and baryon number susceptibilities in these models, with and without the vacuum term, and explore the cutoff and the pion mass dependence of the susceptibilities. Finally, in the renormalized model the divergent vacuum contribution is removed using the dimensional regularization.Comment: 9 pages, 5 figure

    Studies of circadian cycles in human subjects during prolonged isolation in a constant environment using 8-channel telemetry systems Memorandum report no. 66-4

    Get PDF
    Circadian cycles in human subjects during prolonged isolation in constant environment using eight channel telemetry system

    Search for infrared counterparts of gamma-ray bursters

    Get PDF
    The result of two searches for infrared counterparts of Gamma-ray Bursters (GRB's) is reported. The first search was made using data from the Infrared Astronomy Satellite and covered 23 positions. The second search was made with the Kitt Peak 1.5 m telescope and covered 3 positions. In neither of these two searches was any infrared candidate detected

    Gamma-ray burster recurrence timescales

    Get PDF
    Three optical transients have been found which are associated with gamma-ray bursters (GRBs). The deduced recurrence timescale for these optical transients (tau sub opt) will depend on the minimum brightness for which a flash would be detected. A detailed analysis using all available data of tau sub opt as a function of E(gamma)/E(opt) is given. For flashes similar to those found in the Harvard archives, the best estimate of tau sub opt is 0.74 years, with a 99% confidence interval from 0.23 years to 4.7 years. It is currently unclear whether the optical transients from GRBs also give rise to gamma-ray events. One way to test this association is to measure the recurrence timescale of gamma-ray events tau sub gamma. A total of 210 gamma-ray error boxes were examined and it was found that the number of observed overlaps is not significantly different from the number expected from chance coincidence. This observation can be used to place limits on tau sub gamma for an assumed luminosity function. It was found that tau sub gamma is approx. 10 yr if bursts are monoenergetic. However, if GRBs have a power law luminosity function with a wide dynamic range, then the limit is tau sub gamma 0.5 yr. Hence, the gamma-ray data do not require tau sub gamma and tau sub opt to be different

    Studies of circadian cycles in human subjects during prolonged isolation in a constant environment using eight-channel telemetry systems

    Get PDF
    Telemetry monitored physiological data of human circadian cycles during prolonged isolatio

    Nova Aquilae 1918 (V603 Aql) Faded by 0.44 mag/century from 1938-2013

    Get PDF
    We present the light curve of the old nova V603 Aql (Nova Aql 1918) from 1898-1918 and 1934-2013 using 22,721 archival magnitudes. All of our magnitudes are either in, or accurately transformed into, the Johnson BB and VV magnitude systems. This is vital because offsets in old sequences and the visual-to-VV transformation make for errors from 0.1-1.0 magnitude if not corrected. Our V603 Aql light curve is the first time that this has been done for any nova. Our goal was to see the evolution of the mass accretion rate on the century time scale, and to test the long-standing prediction of the Hibernation model that old novae should be fading significantly in the century after their eruption is long over. The 1918 nova eruption was completely finished by 1938 when the nova decline stopped, and when the star had faded to fainter than its pre-nova brightness of B=11.43±0.03B=11.43 \pm 0.03 mag. We find that the nova light from 1938-2013 was significantly fading, with this being seen consistently in three independent data sets (the Sonneberg plates in BB, the AAVSO VV light curve, and the non-AAVSO VV light curve). We find that V603 Aql is declining in brightness at an average rate of 0.44±0.040.44 \pm 0.04 mag per century since 1938. This work provides remarkable confirmation of an important prediction of the Hibernation model.Comment: 13 pages, 1 figure, 2 electronic online data tables, Accepted for publication ApJLet

    Diffractive charged meson pair production

    Full text link
    We investigate the possibility to measure the nonforward gluon distribution function by means of diffractively produced \pi^+\pi^- and K^+K^- pairs in polarized lepton nucleon scattering. The resulting cross sections are small and are dominated by the gluonic contribution. We find relatively large spin asymmetries, both for \pi^+\pi^- and for K^+K^- pairs.Comment: 15 pages, version with changed kinematical cuts, to be pubished in Phys.Lett.

    Gamma Ray Burst Host Galaxies Have `Normal' Luminosities

    Get PDF
    The galactic environment of Gamma Ray Bursts can provide good evidence about the nature of the progenitor system, with two old arguments implying that the burst host galaxies are significantly subluminous. New data and new analysis have now reversed this picture: (A) Even though the first two known host galaxies are indeed greatly subluminous, the next eight hosts have absolute magnitudes typical for a population of field galaxies. A detailed analysis of the 16 known hosts (ten with red shifts) shows them to be consistent with a Schechter luminosity function with R∗=−21.8±1.0R^{*} = -21.8 \pm 1.0 as expected for normal galaxies. (B) Bright bursts from the Interplanetary Network are typically 18 times brighter than the faint bursts with red shifts, however the bright bursts do not have galaxies inside their error boxes to limits deeper than expected based on the luminosities for the two samples being identical. A new solution to this dilemma is that a broad burst luminosity function along with a burst number density varying as the star formation rate will require the average luminosity of the bright sample (>>6×1058ph⋅s−16 \times 10^{58} ph \cdot s^{-1} or >>1.7×1052⋅erg⋅s−11.7 \times 10^{52} \cdot erg \cdot s^{-1}) to be much greater than the average luminosity of the faint sample (∼1058ph⋅s−1\sim 10^{58} ph \cdot s^{-1} or ∼3×1051erg⋅s−1\sim 3 \times 10^{51} erg \cdot s^{-1}). This places the bright bursts at distances for which host galaxies with a normal luminosity will not violate the observed limits. In conclusion, all current evidence points to GRB host galaxies being normal in luminosity.Comment: 18 pages, 3 figures, Submitted to ApJLet

    Gamma-Ray Burster Counterparts: HST Blue and Ultraviolet Data

    Get PDF
    The surest solution of the Gamma Ray Burst (GRB) mystery is to find an unambiguous low-energy quiescent counterpart. However, to date no reasonable candidates have been identified in the x-ray, optical, infrared, or radio ranges. The Hubble Space Telescope (HST) has now allowed for the first deep ultraviolet searches for quiescent counterparts. This paper reports on multiepoch ultraviolet searches of five GRB positions with HST. We found no sources with significant ultraviolet excesses, variability, parallax, or proper motion in any of the burst error regions. In particular, we see no sources similar to that proposed as a counterpart to the GRB970228. While this negative result is disappointing, it still has good utility for its strict limits on the no-host-galaxy problem in cosmological models of GRBs. For most cosmological models (with peak luminosity 6X10^50 erg/s), the absolute B magnitude of any possible host galaxy must be fainter than -15.5 to -17.4. These smallest boxes for some of the brightest bursts provide the most critical test, and our limits are a severe problem for all published cosmological burst models.Comment: 15 pages, 2 ps figures, accepted for publication in the Astrophysical Journa

    Photometric Light Curve for the Kuiper Belt Object 2000 EB173 on 78 Nights

    Get PDF
    Kuiper Belt Objects (KBOs) are generally very faint and cannot in practice be monitored with a well-sampled long-term light curve; so our discovery of the bright KBO 2000 EB173 offers an excellent opportunity for synoptic studies. We present a well-sampled photometric time series (77 R magnitudes and 29 V magnitudes on 78 nights) over a 225-day time span centered on the 2001 opposition. The light curve (corrected to the year 2001 opposition distance) varies from 19.11 to 19.39 mag with a single peak that is smooth, time symmetric, and coincident with opposition. All variations in the light curve are consistent with a linear opposition surge (Ropp = 19.083 + 0.125Xalpha, where alpha is the solar phase angle), while any rotational modulation must have a peak-to-peak amplitude of less than 0.097 mag. This is the first measured opposition surge for any KBO (other than Pluto). The V-R color is 0.63+-0.02, with no apparent variation with phase at the few percent level. With R=19.11 at opposition, 2000 EB173 remains the brightest known KBO and a prime target for future photometric and spectroscopic studies
    • …
    corecore