8 research outputs found

    Clinical and neuropathological study about the neurotization of the suprascapular nerve in obstetric brachial plexus lesions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The lack of recovery of active external rotation of the shoulder is an important problem in children suffering from brachial plexus lesions involving the suprascapular nerve. The accessory nerve neurotization to the suprascapular nerve is a standard procedure, performed to improve shoulder motion in patients with brachial plexus palsy.</p> <p>Methods</p> <p>We operated on 65 patients with obstetric brachial plexus palsy (OBPP), aged 5-35 months (average: 19 months). We assessed the recovery of passive and active external rotation with the arm in abduction and in adduction. We also looked at the influence of the restoration of the muscular balance between the internal and the external rotators on the development of a gleno-humeral joint dysplasia. Intraoperatively, suprascapular nerve samples were taken from 13 patients and were analyzed histologically.</p> <p>Results</p> <p>Most patients (71.5%) showed good recovery of the active external rotation in abduction (60°-90°). Better results were obtained for the external rotation with the arm in abduction compared to adduction, and for patients having only undergone the neurotization procedure compared to patients having had complete plexus reconstruction. The neurotization operation has a positive influence on the glenohumeral joint: 7 patients with clinical signs of dysplasia before the reconstructive operation did not show any sign of dysplasia in the postoperative follow-up.</p> <p>Conclusion</p> <p>The neurotization procedure helps to recover the active external rotation in the shoulder joint and has a good prevention influence on the dysplasia in our sample. The nerve quality measured using histopathology also seems to have a positive impact on the clinical results.</p

    Is Ultracision Knife Safe and Efficient for Breast Capsulectomy? A Preliminary Study

    Get PDF
    Background: Silicone breast implants are used to a wide extent in the field of plastic surgery. However, capsular contracture remains a considerable concern. This study aimed to analyze the effectiveness and applicability of an ultracision knife for capsulectomy breast surgery. Methods: A prospective, single-center, randomized study was performed in 2009. The inclusion criteria specified female patients 20-80years of age with capsular contracture (Baker 3-4). Ventral capsulectomy was performed using an ultracision knife on one side and the conventional Metzenbaum-type scissors and surgical knife on the collateral side of the breast. Measurements of the resected capsular ventral fragment, operative time, remaining breast tissue, drainage time, seroma and hematoma formation, visual analog scale pain score, and sensory function of the nipple-areola complex were assessed. In addition, histologic analysis of the resected capsule was performed. Results: Five patients (median age, 59.2years) were included in this study with a mean follow-up period of 6months. Three patients had Baker grade 3 capsular contracture, and two patients had Baker grade 4 capsular contracture. The ultracision knife was associated with a significantly lower pain score, shorter operative time, smaller drainage volume, and shorter drainage time and resulted in a larger amount of remaining breast tissue. Histologic analysis of the resected capsule showed no apoptotic cells in the study group or control group. Conclusions: The results suggest that ventral capsulectomy with Baker grade 3 or 4 contracture using the ultracision knife is feasible, safe, and more efficient than blunt dissection and monopolar cutting diathermy and has a short learning curve. Level of Evidence II: This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors at www.springer.com/0026

    Stem cells for nerve repair and prevention of muscle atrophy

    No full text
      Peripheral nerve injury (PNI) is common and despite modern microsurgical techniques of repair, functional restoration is always incomplete. This results in impaired sensation and reduced motor function alongside pain and cold intolerance. Traumatic PNI are often associated with loss of nerve tissue, creating a gap, and direct repair of the two damaged nerve stumps is not possible. These types of injuries are reconstructed using autologous nerve grafts but this is far from ideal since it necessitates the sacrifice of a functional nerve from elsewhere in the body. Chronic muscle atrophy because of the prolonged delay in nerve regeneration across gaps is a significant impediment to an optimal functional recovery.   Tissue engineering and regenerative medicine approaches to nerve repair might one day replace the need for autologous nerve grafts. This thesis investigates the effects of adipose derived stem cells (ASC) on nerve regeneration and muscle recovery by using the stem cells for intramuscular injection and combined with a biomaterial, poly-3-hydroxybutyrate (PHB), to create a bioengineered artificial nerve repair construct.  The mechanisms of interaction between the stem cells and neuromuscular system cells were investigated and with a view to translating this work into clinical practice, an optimal source of cells was investigated from human donors.   It was hypothesized that injecting regenerative cells into muscle would reduce nerve injury induced muscle atrophy. A rat sciatic nerve lesion was performed and three different types of cells were injected into the denervated gastrocnemius muscle; either (1) undifferentiated ASC, (2) ASC induced to a ‘Schwann cell-like’ phenotype (dASC) or (3) primary Schwann cells. Nerves were either repaired by direct end-end suture or capped to prevent muscle reinnervation. One month later, functionality was measured using a walking track test, and muscle atrophy was assessed by examining muscle weight and histology. The Schwann cells and dASC groups showed significantly better scores on functional tests when compared with control injections of growth medium alone. Muscle weight and histology were also significantly improved in the cell groups in comparison with the control group.   PHB strips seeded with either primary Schwann cells or dASC suspended in a fibrin glue matrix were used to bridge a 10mm rat sciatic nerve gap. After 12 weeks, functional and morphological analysis (walking track test, electromyography, muscle weight and muscle and nerve histology) was performed. The results showed significantly better functional results for the PHB strips seeded with cells versus the control group with fibrin matrix only. This correlated with less muscle atrophy and greater distal axon myelination in the cell groups.   To further optimize the nerve regeneration and muscle recovery, the nerve gap lesion was repaired by treatment with the bioengineered constructs seeded with dASC or nerve autograft in combination with stem cell injection in the muscle. After 6 weeks, the best results were obtained in the nerve graft group combined with intramuscular dASC injection which showed significantly less atrophy than the other groups. The results also showed that using the stem cells in a matrix on a PHB strip in combination with intramuscular injections could significantly reduce muscle atrophy.   In vitro experiments showed that dASC expressed a wide range of neurotrophic and myogenic factors including BDNF, VEGF-A, IGF-1 and HGF. Stem cell conditioned medium enhanced the proliferation of myoblast cell lines and primary Schwann cells. Various signaling pathways (PKA, MAP kinase) were involved in these effects dependent on the cell type investigated. Furthermore, in direct co-culture with myoblast cells, a small population of the cells fused together to form myotube-like structures and expressed myogenic markers.   Human ASC were isolated from the deep and superficial layers of abdominal fat tissue obtained during abdominoplasty procedures.  Cells from the superficial layer proliferated significantly faster than those from the deep layer. Superficial layer ASC induced significantly enhanced neurite outgrowth from neuronal cell lines when compared with the deep layer cells.  However, RT-PCR and ELISA analysis showed that ASC isolated from both layers expressed similar levels of the neurotrophic factors NGF, BDNF and GDNF.   In summary, these results show that stem cell therapy at both levels (the nerve lesion site and in the target denervated muscle) offers a promising approach for clinical application for treatment of peripheral nerve lesions. The bioengineered artificial nerve construct, combining PHB strip with cells, also provides a beneficial environment for nerve regeneration. Many of the benefits of the ASC are likely to be mediated through their secretome, a rich source of neurotrophic and myogenic factors. Thus adipose tissue contains a pool of regenerative stem cells which have significant potential application to tissue engineering and regenerative medicine for nerve repair

    Intramuscular Stem Cell Injection in Combination with Bioengineered Nerve Repair or Nerve Grafting Reduces Muscle Atrophy

    No full text
    Peripheral nerve injuries represent a clinical challenge, especially when they are accompanied by loss of neural tissue. In this study, the authors attempted to attain a better outcome after a peripheral nerve injury by both repairing the nerve lesion and treating the denervated muscle at the same time. Rat sciatic nerves were transected to create 10-mm gaps. Repair was performed in five groups (n = 5 rats for each), as follows: group 1, nerve repair using poly-3-hydroxybutyrate strips to connect the proximal and distal stumps, in combination with control growth medium injection in the gastrocnemius muscle; group 2, nerve repair with poly-3-hydroxybutyrate strip seeded with Schwann cell-like differentiated adipose stem cells (differentiated adipose stem cell strip) in combination with growth medium intramuscular injection; group 3, differentiated adipose stem cell strip in combination with intramuscular injection of differentiated adipose stem cells; group 4, repair using autograft (reverse sciatic nerve graft) in combination with intramuscular injection of growth medium; and group 5, autograft in combination with intramuscular injection of differentiated adipose stem cells. Six weeks after nerve injury, the effects of the stem cells on muscle atrophy were assessed. Poly-3-hydroxybutyrate strips seeded with differentiated adipose stem cells showed a high number of βIII-tubulin-positive axons entering the distal stump and abundant endothelial cells. Group 1 animals exhibited more muscle atrophy than all the other groups, and group 5 animals had the greatest muscle weights and muscle fibers size. Bioengineering nerve repair in combination with intramuscular stem cell injection is a promising technique to treat nerve lesions and associated muscle atrophy. PLEASE PROVIDE 1 TO 2 SENTENCES HERE.</p

    Nipple Reconstruction After Autologous or Expander Breast Reconstruction: A Multimodal and 3-Dimensional Analysis

    No full text
    Abstract Background: Little is known about the influence of the underlying tissue as donor for nipple-areola complex (NAC) reconstruction. Also, there is a complete lack of knowledge about the fate of nipple volume. Objectives: The goal of this retrospective, single-institution study was to analyze a case series after nipple reconstruction using a multimodal evaluation including 3-dimensional (3D) laser scanner analyses. Methods: Unilateral mastectomy patients after either expander-based or autologous breast reconstruction using the skate flap were included. NAC caliper measurement of nipple and areola size was performed. 3D laser scanner analysis (Minolta Vivid 900) was used to calculate nipple volume, measurement of nipple, and areolar projection and diameter. Sensitivity was evaluated using the Semmes Weinstein test and patient satisfaction by a visual analog scale (VAS 1-10). Results: A total of 10 patients were included in the expander group and 12 patients were included in the flap group. After a median follow-up period of 32 months in the expander group and 34 months in the flap group, non-contact 3D laser surface scanning revealed a difference in projection of 55 to 60% compared to the contralateral side. The contraction in all 3 dimensions led to a dramatic difference in nipple volume with 12 ± 8% (flap reconstructions) and 12 ± 7% (expander reconstructions). Sensitivity of the areola showed better values after expander-based reconstruction. Despite the significant discrepancy in nipple volume and projection as well as areolar diameter, overall patient satisfaction was acceptable (VAS 4.1 ± 3.5). Conclusions: Volume assessment revealed a massive asymmetry to the intact nipple but not between expander and flap reconstructions. Although asymmetry of the areola and nipple remains, patient satisfaction is acceptable. Level of Evidence:

    Neurotrophic activity of human adipose stem cells isolated from deep and superficial layers of abdominal fat.

    No full text
    New approaches to the clinical treatment of traumatic nerve injuries may one day utilize stem cells to enhance nerve regeneration. Adipose-derived stem cells (ASC) are found in abundant quantities and can be harvested by minimally invasive procedures that should facilitate their use in such regenerative applications. We have analyzed the properties of human ASC isolated from the deep and superficial layers of abdominal fat tissue obtained during abdominoplasty procedures. Cells from the superficial layer proliferate significantly faster than those from the deep layer. In both the deep and superficial layers, ASC express the pluripotent stem cell markers oct4 and nanog and also the stro-1 cell surface antigen. Superficial layer ASC induce the significantly enhanced outgrowth of neurite-like processes from neuronal cell lines when compared with that of deep layer cells. However, analysis by reverse transcription with the polymerase chain reaction and by enzyme-linked immunosorbent assay has revealed that ASC isolated from both layers express similar levels of the following neurotrophic factors: nerve growth factor, brain-derived neurotrophic factor and glial-derived neurotrophic factor. Thus, human ASC show promising potential for the treatment of traumatic nerve injuries. In particular, superficial layer ASC warrant further analysis of their neurotrophic molecules
    corecore