8 research outputs found

    Ad Libitum Choline Intake in Healthy Individuals Meets or Exceeds the Proposed Adequate Intake Level

    Get PDF
    Choline is an essential nutrient for humans that is used to synthesize membrane phospholipids and the neurotransmitter acetylcholine. Betaine, a metabolite of choline, functions as a methylgroup donor in the conversion of homocysteine to methionine, and is important for renal function. Accurate analysis of choline intake was previously not possible because the choline content of most foods was not known. Using new and recently published data on the concentrations of choline in common foods, we measured the choline content of diets consumed ad libitum by healthy adult volunteers housed in a clinical research center and compared these with estimates of choline intake derived from 3-d food records kept by subjects immediately before study enrollment. Mean choline intake in this subject population met or slightly exceeded the current Adequate Intake (AI) of 7 mg/(kg · d) set by the Institute of Medicine. Men and women consumed similar amounts of choline per day (8.4 and. 6.7 mg/kg, respectively; P = 0.11). Choline intakes estimated from the 3-d food records were significantly lower than this (when expressed as mg/kg, or as total mg, but not when normalized to energy intake), suggesting underreporting of food intake. Intake of betaine, which may spare choline utilization as a methylgroup donor, was 5.3 mg/(kg · d) in men and 4.7 mg/(kg · d) in women. Intake of folate, vitamin B-12, and methionine + cysteine, were similar and sufficient in all subjects. The current recommended AI for choline seems to be a good approximation of the actual intake of this nutrient

    A Group M Consensus Envelope Glycoprotein Induces Antibodies That Neutralize Subsets of Subtype B and C HIV-1 Primary Viruses

    Get PDF
    HIV-1 subtype C is the most common HIV-1 group M subtype in Africa and many parts of Asia. However, to date HIV-1 vaccine candidate immunogens have not induced potent and broadly neutralizing antibodies against subtype C primary isolates. We have used a centralized gene strategy to address HIV-1 diversity, and generated a group M consensus envelope gene with shortened consensus variable loops (CON-S) for comparative studies with wildtype (WT) Env immunogens. Our results indicate that the consensus HIV-1 group M CON-S Env elicited cross-subtype neutralizing antibodies of similar or greater breadth and titer than the WT Envs tested, indicating the utility of a centralized gene strategy. Our study also shows the feasibility of iterative improvements in Env immunogenicity by rational design of centralized genes

    Cross-reactive monoclonal antibodies to multiple HIV-1 subtype and SIVcpz envelope glycoproteins

    Get PDF
    The extraordinarily high level of genetic variation of HIV-1 env genes poses a challenge to obtain antibodies that cross-react with multiple subtype Env glycoproteins. To determine if cross-reactive monoclonal antibodies (mAbs) to highly conserved epitopes in HIV-1 envelope glycoproteins can be induced, we immunized mice with wild-type or consensus HIV-1 Env proteins and characterized a panel of ten mAbs that reacted with varying breadth to subtypes A, B, C, D, F, G, CRF01_AE and a highly divergent SIVcpzUS Env proteins by ELISA and Western blot analysis. Two mAbs (3B3 and 16H3) cross–reacted with all tested Env proteins, including SIVcpzUS Env. Surface plasmon resonance analyses showed both 3B3 and 16H3 bound Env proteins with high affinity. However, neither neutralized primary HIV-1 pseudoviruses. These data indicate that broadly-reactive non-neutralizing monoclonal antibodies can be elicited, but that the conserved epitopes that they recognize are not present on functional virion trimers. Nonetheless, such mAbs represent valuable reagents to study the biochemistry and structural biology of Env protein oligomers

    Novel App knock-in mouse model shows key features of amyloid pathology and reveals profound metabolic dysregulation of microglia.

    Get PDF
    BACKGROUND: Genetic mutations underlying familial Alzheimer\u27s disease (AD) were identified decades ago, but the field is still in search of transformative therapies for patients. While mouse models based on overexpression of mutated transgenes have yielded key insights in mechanisms of disease, those models are subject to artifacts, including random genetic integration of the transgene, ectopic expression and non-physiological protein levels. The genetic engineering of novel mouse models using knock-in approaches addresses some of those limitations. With mounting evidence of the role played by microglia in AD, high-dimensional approaches to phenotype microglia in those models are critical to refine our understanding of the immune response in the brain. METHODS: We engineered a novel App knock-in mouse model (App RESULTS: Leveraging multi-omics approaches, we discovered profound alteration of diverse lipids and metabolites as well as an exacerbated disease-associated transcriptomic response in microglia with high intracellular Aβ content. The App DISCUSSION: Our findings demonstrate that fibrillar Aβ in microglia is associated with lipid dyshomeostasis consistent with lysosomal dysfunction and foam cell phenotypes as well as profound immuno-metabolic perturbations, opening new avenues to further investigate metabolic pathways at play in microglia responding to AD-relevant pathogenesis. The in-depth characterization of pathological hallmarks of AD in this novel and open-access mouse model should serve as a resource for the scientific community to investigate disease-relevant biology

    Antigenicity and Immunogenicity of a Synthetic Human Immunodeficiency Virus Type 1 Group M Consensus Envelope Glycoprotein

    Get PDF
    Genetic variation of human immunodeficiency virus (HIV-1) represents a major obstacle for AIDS vaccine development. To decrease the genetic distances between candidate immunogens and field virus strains, we have designed and synthesized an artificial group M consensus env gene (CON6 gene) to be equidistant from contemporary HIV-1 subtypes and recombinants. This novel envelope gene expresses a glycoprotein that binds soluble CD4, utilizes CCR5 but not CXCR4 as a coreceptor, and mediates HIV-1 entry. Key linear, conformational, and glycan-dependent monoclonal antibody epitopes are preserved in CON6, and the glycoprotein is recognized equally well by sera from individuals infected with different HIV-1 subtypes. When used as a DNA vaccine followed by a recombinant vaccinia virus boost in BALB/c mice, CON6 env gp120 and gp140CF elicited gamma interferon-producing T-cell responses that recognized epitopes within overlapping peptide pools from three HIV-1 Env proteins, CON6, MN (subtype B), and Chn19 (subtype C). Sera from guinea pigs immunized with recombinant CON6 Env gp120 and gp140CF glycoproteins weakly neutralized selected HIV-1 primary isolates. Thus, the computer-generated “consensus” env genes are capable of expressing envelope glycoproteins that retain the structural, functional, and immunogenic properties of wild-type HIV-1 envelopes
    corecore