175 research outputs found

    Drug resistance in B and non-B subtypes amongst subjects recently diagnosed as primary/recent or chronic HIV-infected over the period 2013–2016: Impact on susceptibility to first-line strategies including integrase strand-transfer inhibitors

    Get PDF
    Objectives To characterize the prevalence of transmitted drug resistance mutations (TDRMs) by plasma analysis of 750 patients at the time of HIV diagnosis from January 1, 2013 to November 16, 2016 in the Veneto region (Italy), where all drugs included in the recommended first line therapies were prescribed, included integrase strand transfer inhibitors (InNSTI). Methods TDRMs were defined according to the Stanford HIV database algorithm. Results Subtype B was the most prevalent HIV clade (67.3%). A total of 92 patients (12.3%) were expected to be resistant to one drug at least, most with a single class mutation (60/68–88.2% in subtype B infected subjectsand 23/24–95.8% in non-B subjects) and affecting mainly NNRTIs. No significant differences were observed between the prevalence rates of TDRMs involving one or more drugs, except for the presence of E138A quite only in patients with B subtype and other NNRTI in subjects with non-B infection. The diagnosis of primary/recent infection was made in 73 patients (9.7%): they had almost only TDRMs involving a single class. Resistance to InSTI was studied in 484 subjects (53 with primary-recent infection), one patient had 143C in 2016, a total of thirteen 157Q mutations were detected (only one in primary/recent infection). Conclusions Only one major InSTI-TDRM was identified but monitoring of TDRMs should continue in the light of continuing presence of NNRTI-related mutation amongst newly diagnosed subjects, sometime impacting also to modern NNRTI drugs recommended in first-line therapy

    Oral and anal high-risk human papilloma virus infection in HIV-positive men who have sex with men over a 24-month longitudinal study: Complexity and vaccine implications

    Get PDF
    BackgroundFew studies focused on longitudinal modifications over time of high-risk HPV (HR-HPV) at anal and oral sites in HIV+ men who have sex with men (MSM).MethodsWe described patterns and longitudinal changes of HR-HPV detection and the prevalence of HR-HPV covered by the nonavalent HPV vaccine (vax-HPV) at oral and anal sites in 165 HIV+ MSM followed in an Italian hospital. The samples were collected at baseline and after 24months (follow-up). The presence of HPV was investigated with Inno-LiPA HPV Genotyping Extra II.ResultsMedian age was 44years (IQR 36-53), median CD4+ cell count at nadir was 312 cells/mm(3) (IQR 187-450). A total of 120 subjects (72.7%) were receiving successful antiretroviral therapy (ART). At baseline and follow-up, the frequency of HR-HPV was significantly higher in the anal site (65.4% vs 9.4 and 62.4% vs 6.8%, respectively). Only 2.9% of subjects were persistently HR-HPV negative at both sites. All oral HR-HPV were single at baseline vs 54.6% at baseline at the anal site (p=0.005), and all oral HR-HPV were single at follow-up vs 54.4% at anal site at follow-up (p=0.002). The lowest rate of concordance between the oral and anal results was found for HR-HPV detection; almost all HR-HPV positive results at both anal and oral sites had different HR-HPV.The most frequent HR-HPV in anal swabs at baseline and follow-up were HPV-16 and HPV-52.At follow-up at anal site, 37.5% of patients had different HR-HPV genotypes respect to baseline, 28.8% of subjects with 1 HR-HPV at baseline had an increased number of HR-HPV, and patients on ART showed a lower frequency of confirmed anal HR-HPV detection than untreated patients (p=0.03) over time. Additionally,54.6 and 50.5% of patients had only HR-vax-HPV at anal site at baseline and follow-up, respectively; 15.2% had only HR-vax-HPV at baseline and follow-up.ConclusionsWe believe that it is important testing multiple sites over time in HIV-positive MSM. ART seems to protect men from anal HR-HPV confirmed detection. Vaccination programmes could reduce the number of HR-HPV genotypes at anal site and the risk of the first HR-HPV acquisition at the oral site

    Ephemeris refinement of 21 Hot Jupiter exoplanets with high timing uncertainties

    Get PDF
    Transit events of extrasolar planets offer a wealth of information for planetary characterization. However, for many known targets, the uncertainty of their predicted transit windows prohibits an accurate scheduling of follow-up observations. In this work, we refine the ephemerides of 21 Hot Jupiter exoplanets with the largest timing uncertainty. We collected 120 professional and amateur transit light curves of the targets of interest, observed with 0.3m to 2.2m telescopes, and analyzed them including the timing information of the planets discovery papers. In the case of WASP-117b, we measured a timing deviation compared to the known ephemeris of about 3.5 hours, for HAT-P-29b and HAT-P-31b the deviation amounted to about 2 hours and more. For all targets, the new ephemeris predicts transit timings with uncertainties of less than 6 minutes in the year 2018 and less than 13 minutes until 2025. Thus, our results allow for an accurate scheduling of follow-up observations in the next decade

    Railway Systems and the 'Universal Good of the State': Technologies of Government in the 19th-Century Papal State

    Get PDF
    Informed by Foucault’s concept of governmentality, the paper focuses on nineteenth-century General Commissariat for the Railroad Industry in the Papal State. Unlike in liberal States, where government intervention in the affairs of railway companies was limited, the pressing need to reinforce the Pope’s pastoral power, strengthen the bond between the believers and the Holy See and ensure equity and the efficiency of the new infrastructure meant that the Commissariat acted as a governmental centre of calculation. Accounting technologies in the form of budgets, cost accounting systems and penetrating audits enabled the government to intervene in the operations of private railway companies. The study analyses the role of accounting and auditing practices in the pursuit of non-liberal goals in an industry which is traditionally perceived as critical to the development of a liberal economy, one in which accounting was traditionally used to maintain investors’ confidence in the capitalist system

    Clinical and molecular characterization of COVID-19 hospitalized patients

    Get PDF
    Clinical and molecular characterization by Whole Exome Sequencing (WES) is reported in 35 COVID-19 patients attending the University Hospital in Siena, Italy, from April 7 to May 7, 2020. Eighty percent of patients required respiratory assistance, half of them being on mechanical ventilation. Fiftyone percent had hepatic involvement and hyposmia was ascertained in 3 patients. Searching for common genes by collapsing methods against 150 WES of controls of the Italian population failed to give straightforward statistically significant results with the exception of two genes. This result is not unexpected since we are facing the most challenging common disorder triggered by environmental factors with a strong underlying heritability (50%). The lesson learned from Autism-Spectrum-Disorders prompted us to re-analyse the cohort treating each patient as an independent case, following a Mendelian-like model. We identified for each patient an average of 2.5 pathogenic mutations involved in virus infection susceptibility and pinpointing to one or more rare disorder(s). To our knowledge, this is the first report on WES and COVID-19. Our results suggest a combined model for COVID-19 susceptibility with a number of common susceptibility genes which represent the favorite background in which additional host private mutations may determine disease progression

    Employing a systematic approach to biobanking and analyzing clinical and genetic data for advancing COVID-19 research

    Get PDF

    ExoClock Project III: 450 new exoplanet ephemerides from ground and space observations

    Get PDF
    The ExoClock project has been created with the aim of increasing the efficiency of the Ariel mission. It will achieve this by continuously monitoring and updating the ephemerides of Ariel candidates over an extended period, in order to produce a consistent catalogue of reliable and precise ephemerides. This work presents a homogenous catalogue of updated ephemerides for 450 planets, generated by the integration of \sim18000 data points from multiple sources. These sources include observations from ground-based telescopes (ExoClock network and ETD), mid-time values from the literature and light-curves from space telescopes (Kepler/K2 and TESS). With all the above, we manage to collect observations for half of the post-discovery years (median), with data that have a median uncertainty less than one minute. In comparison with literature, the ephemerides generated by the project are more precise and less biased. More than 40\% of the initial literature ephemerides had to be updated to reach the goals of the project, as they were either of low precision or drifting. Moreover, the integrated approach of the project enables both the monitoring of the majority of the Ariel candidates (95\%), and also the identification of missing data. The dedicated ExoClock network effectively supports this task by contributing additional observations when a gap in the data is identified. These results highlight the need for continuous monitoring to increase the observing coverage of the candidate planets. Finally, the extended observing coverage of planets allows us to detect trends (TTVs - Transit Timing Variations) for a sample of 19 planets. All products, data, and codes used in this work are open and accessible to the wider scientific community.Comment: Recommended for publication to ApJS (reviewer's comments implemented). Main body: 13 pages, total: 77 pages, 7 figures, 7 tables. Data available at http://doi.org/10.17605/OSF.IO/P298

    Host genetics and COVID-19 severity: increasing the accuracy of latest severity scores by Boolean quantum features

    Get PDF
    The impact of common and rare variants in COVID-19 host genetics has been widely studied. In particular, in Fallerini et al. (Human genetics, 2022, 141, 147–173), common and rare variants were used to define an interpretable machine learning model for predicting COVID-19 severity. First, variants were converted into sets of Boolean features, depending on the absence or the presence of variants in each gene. An ensemble of LASSO logistic regression models was used to identify the most informative Boolean features with respect to the genetic bases of severity. After that, the Boolean features, selected by these logistic models, were combined into an Integrated PolyGenic Score (IPGS), which offers a very simple description of the contribution of host genetics in COVID-19 severity. IPGS leads to an accuracy of 55%–60% on different cohorts, and, after a logistic regression with both IPGS and age as inputs, it leads to an accuracy of 75%. The goal of this paper is to improve the previous results, using not only the most informative Boolean features with respect to the genetic bases of severity but also the information on host organs involved in the disease. In this study, we generalize the IPGS adding a statistical weight for each organ, through the transformation of Boolean features into “Boolean quantum features,” inspired by quantum mechanics. The organ coefficients were set via the application of the genetic algorithm PyGAD, and, after that, we defined two new integrated polygenic scores ((Formula presented.) and (Formula presented.)). By applying a logistic regression with both IPGS, ((Formula presented.) (or indifferently (Formula presented.)) and age as inputs, we reached an accuracy of 84%–86%, thus improving the results previously shown in Fallerini et al. (Human genetics, 2022, 141, 147–173) by a factor of 10%
    corecore