29 research outputs found

    Vibration analysis of sandwich beams with variable cross section on variable Winkler elastic foundation

    Get PDF
    In this study, free vibration behavior of a multilayered symmetric sandwich beam made of functionally graded materials (FGMs) with variable cross section resting on variable Winkler elastic foundation are investigated. The elasticity and density of the functionally graded (FG) sandwich beam vary through the thickness according to the power law. This law is related to mixture rules and laminate theory. In order to provide this, a 50-layered beam is considered. Each layer is isotropic and homogeneous, although the volume fractions of the constituents of each layer are different. Furthermore, the width of the beam varies exponentially along the length of the beam, and also the beam is resting on an elastic foundation whose coefficient is variable along the length of the beam. The natural frequencies are computed for conventional boundary conditions of the FG sandwich beam using a theoretical procedure. The effects of material, geometric, elastic foundation indexes and slenderness ratio on natural frequencies and mode shapes of the beam are also computed and discussed. Finally, the results obtained are compared with a finite-element-based commercial program, ANSYS®, and found to be consistent with each other

    Elastic properties and buckling load evaluation of ceramic particles filled glass/epoxy composites

    No full text
    In the current investigation, the effects of the various ceramic particles on elastic properties and load carrying capabilities of filled E-glass/epoxy composite plates are determined experimentally and numerically. The composite plates are filled with 0% (unfilled), 5%, 10% and 15% particle weight fractions (based on the weight of composite), such as silicon carbide (SiC), which has two particle sizes, aluminum oxide (Al2O3) and boron carbide (B4C). The results indicate that the load carrying capability of composites are significantly influenced by particle weight fractions, different particle sizes and different ceramic particles (fillers). Accordingly, the load carrying capabilities of composites filled with 10 wt% ceramic particles are found higher for small particle sizes. Moreover, the addition of 10 wt% boron carbide (B4C) particles to composites increases the critical buckling load value of composite up to 42%. © 2013 Elsevier Ltd. All rights reserved

    Influences of multiple holes on thermal stresses in a thermoplastic composite disc

    No full text
    157-168The aim of this investigation is to observe the influence of multiple holes on thermal stresses in a thermoplastic composite hollow disc. For this purpose, a thermoplastic composite disc is reinforced by steel fibers as curvilinear for radial direction, and thermal loads are carried out for uniform distribution at various temperatures. The solution is completed in two parts that are elastic and elastic-plastic analysis. Additionally, residual stresses are calculated using these analysis results. Finite element method (FEM) is utilized for calculation of thermal stresses. Therefore, the thermal stress analysis is performed using ANSYS® finite element software. Due to the fact that composite disc have different thermal expansions in radial and tangential directions, thermal stresses are taken place in disc by the applied uniform thermal loadings. The magnitude of the tangential stress components both elastic and elastic-plastic solutions is higher than that of the radial stress components, except edges of multiple holes. The present study concludes that magnitudes and distributions of thermal and residual stresses on the composite disc are considerably affected by increasing the uniform temperature loadings and existence of multiple hole

    Elasto-plastic thermal stress analysis in a thermoplastic composite disc under uniform temperature using FEM

    No full text
    The aim of this study was to investigate elasto-plastic thermal stresses in a thermoplastic composite disc that is reinforced by steel fibers, curvilinearly. Finite element method (FEM) was used to calculate the thermal stress distribution in the model of composite disc. The solution was performed by ANSYS software code. In order to evaluate the effects of uniform temperature, different values of it were carried out on the model of composite disc, uniformly. Radial and tangential stresses were calculated under a uniform temperature distribution which was selected from 60 C to 120 C. Because of the composite disc having different thermal expansions in radial and tangential directions, thermal stresses were produced in it by the applied uniform temperature values. The magnitude of the tangential stress component for elastic and elasto-plastic solutions was higher than the radial stress component. The radial stress components were obtained as compressive on the inner and outer surfaces. Besides the tangential stress components were calculated as compressive and tensile on the inner and outer surfaces, respectively. The absolute values of it were the highest on the inner surface both radial and tangential directions. The residual stress components also were calculated using elastic and elasto-plastic solution results. The obtained results showed that the positions of the improved thermal stresses and residual stresses were considerably affected increasing uniform temperature value. © Association for Scientific Research

    Elasto-Plastic Thermal Stress Analysis in a Thermoplastic Composite Disc under Uniform Temperature Using FEM

    No full text
    The aim of this study was to investigate elasto-plastic thermal stresses in a thermoplastic composite disc that is reinforced by steel fibers, curvilinearly. Finite element method (FEM) was used to calculate the thermal stress distribution in the model of composite disc. The solution was performed by ANSYS software code. In order to evaluate the effects of uniform temperature, different values of it were carried out on the model of composite disc, uniformly. Radial and tangential stresses were calculated under a uniform temperature distribution which was selected from 60 C to 120 C. Because of the composite disc having different thermal expansions in radial and tangential directions, thermal stresses were produced in it by the applied uniform temperature values. The magnitude of the tangential stress component for elastic and elasto-plastic solutions was higher than the radial stress component. The radial stress components were obtained as compressive on the inner and outer surfaces. Besides the tangential stress components were calculated as compressive and tensile on the inner and outer surfaces, respectively. The absolute values of it were the highest on the inner surface both radial and tangential directions. The residual stress components also were calculated using elastic and elasto-plastic solution results. The obtained results showed that the positions of the improved thermal stresses and residual stresses were considerably affected increasing uniform temperature value

    Elasto-Plastic Thermal Stress Analysis in a Thermoplastic Composite Disc under Uniform Temperature Using FEM

    No full text
    The aim of this study was to investigate elasto-plastic thermal stresses in a thermoplastic composite disc that is reinforced by steel fibers, curvilinearly. Finite element method (FEM) was used to calculate the thermal stress distribution in the model of composite disc. The solution was performed by ANSYS software code. In order to evaluate the effects of uniform temperature, different values of it were carried out on the model of composite disc, uniformly. Radial and tangential stresses were calculated under a uniform temperature distribution which was selected from 60 C to 120 C. Because of the composite disc having different thermal expansions in radial and tangential directions, thermal stresses were produced in it by the applied uniform temperature values. The magnitude of the tangential stress component for elastic and elasto-plastic solutions was higher than the radial stress component. The radial stress components were obtained as compressive on the inner and outer surfaces. Besides the tangential stress components were calculated as compressive and tensile on the inner and outer surfaces, respectively. The absolute values of it were the highest on the inner surface both radial and tangential directions. The residual stress components also were calculated using elastic and elasto-plastic solution results. The obtained results showed that the positions of the improved thermal stresses and residual stresses were considerably affected increasing uniform temperature value. © Association for Scientific Research

    Influences of multiple holes on thermal stresses in a thermoplastic composite disc

    No full text
    Şen, Faruk (Aksaray, Yazar)The aim of this investigation is to observe the influence of multiple holes on thermal stresses in a thermoplastic composite hollow disc. For this purpose, a thermoplastic composite disc is reinforced by steel fibers as curvilinear for radial direction, and thermal loads are carried out for uniform distribution at various temperatures. The solution is completed in two parts that are elastic and elastic-plastic analysis. Additionally, residual stresses are calculated using these analysis results. Finite element method (FEM) is utilized for calculation of thermal stresses. Therefore, the thermal stress analysis is performed using ANSYS® finite element software. Due to the fact that composite disc have different thermal expansions in radial and tangential directions, thermal stresses are taken place in disc by the applied uniform thermal loadings. The magnitude of the tangential stress components both elastic and elastic-plastic solutions is higher than that of the radial stress components, except edges of multiple holes. The present study concludes that magnitudes and distributions of thermal and residual stresses on the composite disc are considerably affected by increasing the uniform temperature loadings and existence of multiple hole

    Darbe Yükü Altındaki Hibrit Kompozit Plakalara Sıcaklığın Etkisi

    No full text
    Bu çalışmada, karbon-cam elyaf/epoksi (hibrit) kompozitlerin sıcaklık ve artan darbe enerjisi altındaki darbe davranışları incelenmiştir. Bununla ilgili olarak iki tip tabaka dizilim açısına sahip, 8 tabakalı hibrit kompozit numunelere -20, 0, 20 ve 40 oC sıcaklıklarında, numunelerde delinme meydana gelene kadar darbe enerjisi uygulanmıştır. Hibrit kompozitlerin saplanma ve delinme sınır değerlerinin belirlenmesinde, darbe enerjisi ve absorbe edilen enerji arasındaki ilişkiyi göstermede kullanılan enerji profili diyagramı kullanılmıştır. Bunun yanı sıra, maksimum temas kuvveti (Fmax), toplam çökme (d) ve maksimum temas süresi (t) gibi önemli darbe karakteristiklerinin sıcaklık geçişlerindeki değişimleri de sunulmuştur. Sonuç olarak, cam ve karbon fiberlerin -20 oC'de, diğer sıcaklıklara göre daha çok gevrekleştiği görülmüştür. Buna göre her iki tip hibrit kompozit için -20 oC'de meydana gelen delinme sınırı diğer sıcaklıklara göre en yüksek değerde bulunmuştur

    Temperature Effects on Hybrid Composite Plates Under Impact Loads

    No full text
    In this work, impact responses of carbon-glass fiber/epoxy (hybrid) composites were investigated under various temperatures and increasing impact energies. The increasing impact energies were applied to the specimens at various temperatures as -20, 0, 20 and 40 oC until perforation took place of specimens. Those specimens are composed by two types of fiber orientation with eight laminates hybrid composites. An Energy profiling diagram, used for showing the relationship between impact and absorbed energy, has been used to obtain penetration and perforation thresholds of hybrid composites. Beside those, temperature effects on impact characteristics such as maximum contact force (Fmax), total deflection (d) and maximum contact duration (t) were also presented in figures. Finally, glass and carbon fibers exhibited more brittle characteristics at -20 oC according to other temperatures. So, perforation threshold of each hybrid composites at -20 oC was found higher than other temperatures. Keywords : Hybrid composit
    corecore