22 research outputs found
Cadmium Accumulation in Tissues of Sarotherodon melanotheron (RĂŒppel, 1852) from the Aby Lagoon System in CĂŽte dâIvoire
This study assessed the concentrations of cadmium in the gills, livers and muscles of a commercially important tilapia fish (Sarotherodon melanotheron) from Aby Lagoon in AdiakĂ©, CĂŽte dâIvoire, between January and December, 2010. The organisms were grouped into two composite samples (juvenile and adult) of five individuals. Levels of cadmium were determined in tissues using Perkin-Elmer (AAnalyst 200) Atomic Absorption Spectrophotometry (AAS) after a digestion method. Fish muscle appeared to have a significantly higher tendency to accumulate cadmium (1.19â5.18 ”g/g dw) while gills and livers had minimum concentrations (0.07â1.32 and 0.12â1.25 ”g/g dw). This study has revealed that the concentrations of Cd in Sarotherodon melanotheron muscle tissue were above the maximum acceptable concentrations for human consumption, thus precautions need to be taken in order to prevent future contamination
Damage mechanisms of pathogenic bacteria in drinking water during chlorine and solar disinfection
This study aimed at elucidating the inactivation mechanisms of pathogenic bacteria in drinking water during chlorine and solar disinfection using a simple plating method. The well-known bacterial model Escherichia coli was used as pathogenic bacteria for the experiments. The damage mechanisms of E. coli were evaluated by simple plating method on selective, less selective and non-selective media. Results showed that, injured E. coli were detected at different levels during chlorine and solar disinfection. The use of selective media during water quality control showed effectively the destruction of E. coli during solar disinfection while the removal of E. coli during chlorine disinfection was not ensured. The damage of cell components and/or metabolic functions showed that there is a primary and mainly damage of E. coli during chorine and solar disinfection. Chlorination firstly and mainly damaged membrane cell followed by that of enzymatic functions and nucleic acid; while solar disinfection damaged mainly nucleic acid. The use of simple plating method in water quality control is limited by the choice of plating media depending on the disinfectant used. The understanding of the damage mechanisms of pathogenic bacteria cells during disinfection helps improve drinking water quality control and develops more effective disinfection strategies.© 2016 International Formulae Group. All rights reserved.Keywords: Drinking water, pathogenic bacteria, E. coli, damage mechanisms, chlorine disinfection, solar disinfectio
Traitement des eaux usées industrielles par des procédés membranaires sous climat sahélien : cas des eaux usées de brasserie au Burkina Faso
The beverage industries generate large volumes of wastewater daily. Due to production residues and washing and disinfecting products, these industrial discharges, in addition to being loaded with organic matter, contain mineral pollutants such as sodium. Reverse osmosis (RO), electrodialysis (ED) and nanofiltration (NF) are efficient processes for the removal of dissolved inorganic pollutants and the membrane bioreactor (MBR) for the degradation of organic pollution. 4 MBR pilots, 2 from NF and 1 from ED were used to study the treatment of effluents from the beer and soft drinks industry using membrane technologies in the Sahelian climate context. The biomass evolution in the biological reactor and the treatment efficiency were followed. The influence of the operating conditions on the facilities running was also evaluated. The results obtained show that the characteristics of the industrial wastewater used vary significantly with average levels of chemical oxygen demand (COD) of 5 gO2 / L, sodium of 0.5 mg / L and pH of 11. The evolution of the microorganisms in the biological reactor is influenced by the operating conditions, in particular the pH, the temperature, the organic load of the feed, the sludge retention time and the mechanical performance of the system. COD removal efficiencies between 93 and 96% were obtained both aerobically and anaerobically. Elimination of organic pollution was influenced by the acclimation of the biomass and by the mass loading in the reactor. Sodium was poorly retained by MBR treatment with low retention rates. The average biogas production yield with anaerobic MBR is estimated at 0.21 ± 0.03 L biogas/gCOD removed for an average flow rate of 89 ± 40 L/d. The application of NF to the MBR permeate has led to higher quality effluents with removal of both dissolved organic matter and ions. ED led to better salinity removal as a result of MBR but less of dissolved organic matter. The sodium concentrations in the final products of treatments obtained with NF and ED are less than 150 mg / L thus allowing a possible reuse of treated water for irrigation and a safe rejection in the environment. Taking into account the different activities, the operating cost of the current Brakina pre-treatment station is estimated at 140 FCFA/m3 of treated wastewater (⏠0.213), of which about 70% for the neutralization of wastewater by the addition of concentrated acid. Improving treatment with MBR-NF coupling shows an investment estimated at 3.8 billion FCFA (5.7 million euros). Operating expenses are estimated at 322 FCFA/m3 of treated wastewater (0.49 euros/m3 of treated wastewater) for an aerated MBR compared to 227 FCFA/m3 of treated wastewater (0.34 euro/m3 of treated wastewater) for anaerobic MBR is a decrease of 30%. The construction of such a system could lead to the sustainability of market gardening downstream of the Kossodo treatment plant and generate hundreds of permanent jobs with net revenues of more than 12 million FCFA/month (18.675 euros). Also, this could be a showcase for the social and environmental policy of Brakina. However, the major investments, the space requirements that the implementation of this proposal requires and the unavailability on site of technical competence for the curative maintenance of the system could be the main constraints to the implementation of this project.Key words: beverage production industry, electrodialysis, industrial wastewater, membrane bioreactor, nanofiltrationLes industries de production de boissons gĂ©nĂšrent quotidiennement des volumes importants dâeaux usĂ©es. Du fait des rĂ©sidus de production et des produits de lavage et de dĂ©sinfection, ces rejets industriels, en plus dâĂȘtre chargĂ©s en matiĂšre organique, contiennent des polluants minĂ©raux comme le sodium. Lâosmose inverse (OI), lâĂ©lectrodyalyse (ED) et la nanofiltration (NF) sont des procĂ©dĂ©s performants pour lâĂ©limination des polluants minĂ©raux dissouts et le biorĂ©acteur rĂ©acteur Ă membrane (BĂ M) pour la dĂ©gradation de la pollution organique. 4 pilotes de BĂ M, 2 de NF et 1 dâED ont Ă©tĂ© utilisĂ©es pour Ă©tudier le traitement dâeffluents dâindustrie de production de biĂšres et de boissons gazeuses par des technologies membranaires dans le contexte climatique sahĂ©lien. LâĂ©volution de la biomasse dans le rĂ©acteur biologique et les performances Ă©puratoires des systĂšmes ont Ă©tĂ© suivies. Lâinfluence des conditions opĂ©ratoires sur le fonctionnement des installations a Ă©galement Ă©tĂ© Ă©valuĂ©e. Les rĂ©sultats obtenus montrent que les caractĂ©ristiques des eaux usĂ©es industrielles Ă©tudiĂ©es connaissent des variations importantes avec des teneurs moyennes de demande chimique en oxygĂšne (DCO) de 5 gO2/L, de sodium de 0,5 mg/L et de pH de 11. LâĂ©volution des microorganismes dans le rĂ©acteur biologique est influencĂ©e par les conditions opĂ©ratoires notamment le pH, la tempĂ©rature, la charge organique de lâalimentation, le temps de sĂ©jour des boues et les performances mĂ©caniques du systĂšme. LâĂ©limination de la pollution organique a Ă©tĂ© influencĂ©e par lâacclimatation de la biomasse et par la charge massique dans le rĂ©acteur. Des rendements dâĂ©limination de la DCO compris entre 93 et 96 % ont Ă©tĂ© obtenus aussi bien en conditions aĂ©robie quâanaĂ©robie. Le sodium a Ă©tĂ© trĂšs peu retenu par le traitement au BĂ M avec des rendements dâĂ©limination faibles. Le rendement moyen de production de biogaz avec le BĂ M anaĂ©robie est estimĂ© Ă 0,21±0,03 L biogaz/gDCO Ă©liminĂ© pour un dĂ©bit moyen de 89±40 L/j. Lâapplication de la NF au permĂ©at du BĂ M a conduit Ă des effluents de meilleure qualitĂ© avec une Ă©limination aussi bien de la matiĂšre organique dissoute que des ions. LâED a conduit Ă une meilleure Ă©limination de la salinitĂ© Ă la suite du BĂ M mais moins de la matiĂšre organique dissoute. Les concentrations de sodium dans les produits finaux de traitement avec la NF et lâED sont infĂ©rieures Ă 150 mg/L autorisant ainsi une possible rĂ©utilisation des eaux traitĂ©es pour lâirrigation et un dĂ©versement sans risque dans lâenvironnement. Tenant compte des diffĂ©rentes activitĂ©s, le cout dâexploitation de la station de prĂ©traitement actuelle de la Brakina est Ă©valuĂ©e Ă 140 FCFA/m3 dâeau traitĂ©e (0,213 euros) dont environ 70% consacrĂ© Ă la neutralisation des eaux usĂ©es par lâaddition dâacide concentrĂ©. LâamĂ©lioration du traitement avec un couplage BĂ M-NF fait ressortir un investissement estimĂ© Ă 3,8 milliards de FCFA (5,7 millions dâeuros). Les charges dâexploitation sont pour leur part Ă©valuĂ©es Ă 322 FCFA/m3 dâeau traitĂ©e (0,49 euros/m3 dâeau traitĂ©e) pour un BĂ M aĂ©rĂ© contre 227 FCFA/m3 dâeau traitĂ©e (0,34 euro/m3 dâeau traitĂ©e) pour un BĂ M anaĂ©robie soit une baisse de 30%. La construction dâun tel systĂšme pourrait occasionner la pĂ©rennisation de la maraĂźcheculture en aval de la station de traitement de Kossodo et gĂ©nĂ©rer des centaines dâemplois permanents avec des revenus nets supĂ©rieurs Ă 12 millions FCFA/mois (18 675 euros). Aussi, cela pourrait constituer une vitrine pour la politique sociale et environnementale de la Brakina. Toutefois, les investissements importants, la disponibilitĂ© spatiale et lâabsence de compĂ©tence technique pour la maintenance curative du systĂšme pourraient ĂȘtre les principales contraintes Ă la mise en Ćuvre de ce projet.Mots clĂ©s : biorĂ©acteur Ă membrane, eaux usĂ©es industrielles, Ă©lectrodyalyse, industrie de production de boissons, nanofiltratio
Industrial wastewater treatment by membrane technology in the Sahelian climate : the case of brewery wastewater in Burkina Faso
Les industries de production de boissons gĂ©nĂšrent quotidiennement des volumes importants dâeaux usĂ©es. Du fait des rĂ©sidus de production et des produits de lavage et de dĂ©sinfection, ces rejets industriels, en plus dâĂȘtre chargĂ©s en matiĂšre organique, contiennent des polluants minĂ©raux comme le sodium. Lâosmose inverse (OI), lâĂ©lectrodyalyse (ED) et la nanofiltration (NF) sont des procĂ©dĂ©s performants pour lâĂ©limination des polluants minĂ©raux dissouts et le biorĂ©acteur rĂ©acteur Ă membrane (BĂ M) pour la dĂ©gradation de la pollution organique. 4 pilotes de BĂ M, 2 de NF et 1 dâED ont Ă©tĂ© utilisĂ©es pour Ă©tudier le traitement dâeffluents dâindustrie de production de biĂšres et de boissons gazeuses par des technologies membranaires dans le contexte climatique sahĂ©lien. LâĂ©volution de la biomasse dans le rĂ©acteur biologique et les performances Ă©puratoires des systĂšmes ont Ă©tĂ© suivies. Lâinfluence des conditions opĂ©ratoires sur le fonctionnement des installations a Ă©galement Ă©tĂ© Ă©valuĂ©e. Les rĂ©sultats obtenus montrent que les caractĂ©ristiques des eaux usĂ©es industrielles Ă©tudiĂ©es connaissent des variations importantes avec des teneurs moyennes de demande chimique en oxygĂšne (DCO) de 5 gO2/L, de sodium de 0,5 mg/L et de pH de 11. LâĂ©volution des microorganismes dans le rĂ©acteur biologique est influencĂ©e par les conditions opĂ©ratoires notamment le pH, la tempĂ©rature, la charge organique de lâalimentation, le temps de sĂ©jour des boues et les performances mĂ©caniques du systĂšme. LâĂ©limination de la pollution organique a Ă©tĂ© influencĂ©e par lâacclimatation de la biomasse et par la charge massique dans le rĂ©acteur. Des rendements dâĂ©limination de la DCO compris entre 93 et 96 % ont Ă©tĂ© obtenus aussi bien en conditions aĂ©robie quâanaĂ©robie. Le sodium a Ă©tĂ© trĂšs peu retenu par le traitement au BĂ M avec des rendements dâĂ©limination faibles. Le rendement moyen de production de biogaz avec le BĂ M anaĂ©robie est estimĂ© Ă 0,21±0,03 L biogaz/gDCO Ă©liminĂ© pour un dĂ©bit moyen de 89±40 L/j. Lâapplication de la NF au permĂ©at du BĂ M a conduit Ă des effluents de meilleure qualitĂ© avec une Ă©limination aussi bien de la matiĂšre organique dissoute que des ions. LâED a conduit Ă une meilleure Ă©limination de la salinitĂ© Ă la suite du BĂ M mais moins de la matiĂšre organique dissoute. Les concentrations de sodium dans les produits finaux de traitement avec la NF et lâED sont infĂ©rieures Ă 150 mg/L autorisant ainsi une possible rĂ©utilisation des eaux traitĂ©es pour lâirrigation et un dĂ©versement sans risque dans lâenvironnement. Tenant compte des diffĂ©rentes activitĂ©s, le cout dâexploitation de la station de prĂ©traitement actuelle de la Brakina est Ă©valuĂ©e Ă 140 FCFA/m3 dâeau traitĂ©e (0,213 euros) dont environ 70% consacrĂ© Ă la neutralisation des eaux usĂ©es par lâaddition dâacide concentrĂ©. LâamĂ©lioration du traitement avec un couplage BĂ M-NF fait ressortir un investissement estimĂ© Ă 3,8 milliards de FCFA (5,7 millions dâeuros). Les charges dâexploitation sont pour leur part Ă©valuĂ©es Ă 322 FCFA/m3 dâeau traitĂ©e (0,49 euros/m3 dâeau traitĂ©e) pour un BĂ M aĂ©rĂ© contre 227 FCFA/m3 dâeau traitĂ©e (0,34 euro/m3 dâeau traitĂ©e) pour un BĂ M anaĂ©robie soit une baisse de 30%. La construction dâun tel systĂšme pourrait occasionner la pĂ©rennisation de la maraĂźcheculture en aval de la station de traitement de Kossodo et gĂ©nĂ©rer des centaines dâemplois permanents avec des revenus nets supĂ©rieurs Ă 12 millions FCFA/mois (18 675 euros). Aussi, cela pourrait constituer une vitrine pour la politique sociale et environnementale de la Brakina. Toutefois, les investissements importants, la disponibilitĂ© spatiale et lâabsence de compĂ©tence technique pour la maintenance curative du systĂšme pourraient ĂȘtre les principales contraintes Ă la mise en Ćuvre de ce projet.Mots clĂ©s : biorĂ©acteur Ă membrane, eaux usĂ©es industrielles, Ă©lectrodyalyse, industrie de production de boissons, nanofiltrationThe beverage industries generate large volumes of wastewater daily. Due to production residues and washing and disinfecting products, these industrial discharges, in addition to being loaded with organic matter, contain mineral pollutants such as sodium. Reverse osmosis (RO), electrodialysis (ED) and nanofiltration (NF) are efficient processes for the removal of dissolved inorganic pollutants and the membrane bioreactor (MBR) for the degradation of organic pollution. 4 MBR pilots, 2 from NF and 1 from ED were used to study the treatment of effluents from the beer and soft drinks industry using membrane technologies in the Sahelian climate context. The biomass evolution in the biological reactor and the treatment efficiency were followed. The influence of the operating conditions on the facilities running was also evaluated. The results obtained show that the characteristics of the industrial wastewater used vary significantly with average levels of chemical oxygen demand (COD) of 5 gO2 / L, sodium of 0.5 mg / L and pH of 11. The evolution of the microorganisms in the biological reactor is influenced by the operating conditions, in particular the pH, the temperature, the organic load of the feed, the sludge retention time and the mechanical performance of the system. COD removal efficiencies between 93 and 96% were obtained both aerobically and anaerobically. Elimination of organic pollution was influenced by the acclimation of the biomass and by the mass loading in the reactor. Sodium was poorly retained by MBR treatment with low retention rates. The average biogas production yield with anaerobic MBR is estimated at 0.21 ± 0.03 L biogas/gCOD removed for an average flow rate of 89 ± 40 L/d. The application of NF to the MBR permeate has led to higher quality effluents with removal of both dissolved organic matter and ions. ED led to better salinity removal as a result of MBR but less of dissolved organic matter. The sodium concentrations in the final products of treatments obtained with NF and ED are less than 150 mg / L thus allowing a possible reuse of treated water for irrigation and a safe rejection in the environment. Taking into account the different activities, the operating cost of the current Brakina pre-treatment station is estimated at 140 FCFA/m3 of treated wastewater (⏠0.213), of which about 70% for the neutralization of wastewater by the addition of concentrated acid. Improving treatment with MBR-NF coupling shows an investment estimated at 3.8 billion FCFA (5.7 million euros). Operating expenses are estimated at 322 FCFA/m3 of treated wastewater (0.49 euros/m3 of treated wastewater) for an aerated MBR compared to 227 FCFA/m3 of treated wastewater (0.34 euro/m3 of treated wastewater) for anaerobic MBR is a decrease of 30%. The construction of such a system could lead to the sustainability of market gardening downstream of the Kossodo treatment plant and generate hundreds of permanent jobs with net revenues of more than 12 million FCFA/month (18.675 euros). Also, this could be a showcase for the social and environmental policy of Brakina. However, the major investments, the space requirements that the implementation of this proposal requires and the unavailability on site of technical competence for the curative maintenance of the system could be the main constraints to the implementation of this project.Key words: beverage production industry, electrodialysis, industrial wastewater, membrane bioreactor, nanofiltratio