3,105 research outputs found

    Two-Nucleon Systems in a Finite Volume: (II) 3S1-3D1 Coupled Channels and the Deuteron

    Get PDF
    The energy spectra of two nucleons in a cubic volume provide access to the two phase shifts and one mixing angle that define the S-matrix in the 3S1-3D1 coupled channels containing the deuteron. With the aid of recently derived energy quantization conditions for such systems, and the known scattering parameters, these spectra are predicted for a range of volumes. It is found that extractions of the infinite-volume deuteron binding energy and leading scattering parameters, including the S-D mixing angle at the deuteron pole, are possible from Lattice QCD calculations of two-nucleon systems with boosts of |P| <= 2pi sqrt{3}/L in volumes with 10 fm <~ L <~ 14 fm. The viability of extracting the asymptotic D/S ratio of the deuteron wavefunction from Lattice QCD calculations is discussed.Comment: 31 pages, 17 figure

    Two-Baryon Systems with Twisted Boundary Conditions

    Get PDF
    We explore the use of twisted boundary conditions in extracting the nucleon mass and the binding energy of two-baryon systems, such as the deuteron, from Lattice QCD calculations. Averaging the results of calculations performed with periodic and anti-periodic boundary conditions imposed upon the light-quark fields, or other pair-wise averages, improves the volume dependence of the deuteron binding energy from ~exp(-kappa*L)/L to ~exp(-sqrt(2)kappa*L)/L. However, a twist angle of pi/2 in each of the spatial directions improves the volume dependence from ~exp(-kappa*L)/L to ~exp(-2kappa*L)/L. Twist averaging the binding energy with a random sampling of twist angles improves the volume dependence from ~exp^(-kappa*L)/L to ~exp(-2kappa*L)/L, but with a standard deviation of ~exp(-kappa*L)/L, introducing a signal-to-noise issue in modest lattice volumes. Using the experimentally determined phase shifts and mixing angles, we determine the expected energies of the deuteron states over a range of cubic lattice volumes for a selection of twisted boundary conditions.Comment: 20 pages, 3 figure

    Nucleon-Nucleon Scattering in a Harmonic Potential

    Full text link
    The discrete energy-eigenvalues of two nucleons interacting with a finite-range nuclear force and confined to a harmonic potential are used to numerically reconstruct the free-space scattering phase shifts. The extracted phase shifts are compared to those obtained from the exact continuum scattering solution and agree within the uncertainties of the calculations. Our results suggest that it might be possible to determine the amplitudes for the scattering of complex systems, such as n-d, n-t or n-alpha, from the energy-eigenvalues confined to finite volumes using ab-initio bound-state techniques.Comment: 19 pages, 13 figure

    Multi-Pion Systems in Lattice QCD and the Three-Pion Interaction

    Full text link
    The ground-state energies of 2, 3, 4 and 5 \pi^+'s in a spatial volume V (2.5 fm)^3 are computed with lattice QCD. By eliminating the leading contribution from three-\pi^+ interactions, particular combinations of these n-\pi^+ ground-state energies provide precise extractions of the \pi^+\pi^+ scattering length in agreement with that obtained from calculations involving only two \pi^+'s. The three-\pi^+ interaction can be isolated by forming other combinations of the n-\pi^+ ground-state energies. We find a result that is consistent with a repulsive three-\pi^+ interaction for m_\pi < 352 MeV.Comment: 4 pages, 5 figure

    Two scenarios for avalanche dynamics in inclined granular layers

    Full text link
    We report experimental measurements of avalanche behavior of thin granular layers on an inclined plane for low volume flow rate. The dynamical properties of avalanches were quantitatively and qualitatively different for smooth glass beads compared to irregular granular materials such as sand. Two scenarios for granular avalanches on an incline are identified and a theoretical explanation for these different scenarios is developed based on a depth-averaged approach that takes into account the differing rheologies of the granular materials.Comment: 4 pages, 4 figures, accepted to Phys. Rev. Let

    Pi-K Scattering in Full QCD with Domain-Wall Valence Quarks

    Get PDF
    We calculate the pi+ K+ scattering length in fully-dynamical lattice QCD with domain-wall valence quarks on MILC lattices with rooted staggered sea-quarks at a lattice spacing of b=0.125 fm, lattice spatial size of L =2.5 fm and at pion masses of m_pi=290, 350, 490 and 600 MeV. The lattice data, analyzed at next-to-leading order in chiral perturbation theory, allows an extraction of the full pi K scattering amplitude at threshold. Extrapolating to the physical point gives m_pi a_3/2 = -0.0574 (+- 0.0016)(+0.0024 -0.0058) and m_pi a_1/2 = 0.1725 (+- 0.0017)(+0.0023 -0.0156) for the I=3/2 and I=1/2 scattering lengths, respectively, where the first error is statistical and the second error is an estimate of the systematic due to truncation of the chiral expansion.Comment: 14 pages, 9 figure

    High Statistics Analysis using Anisotropic Clover Lattices: (I) Single Hadron Correlation Functions

    Get PDF
    We present the results of high-statistics calculations of correlation functions generated with single-baryon interpolating operators on an ensemble of dynamical anisotropic gauge-field configurations generated by the Hadron Spectrum Collaboration using a tadpole-improved clover fermion action and Symanzik-improved gauge action. A total of 292,500 sets of measurements are made using 1194 gauge configurations of size 20^3 x 128 with an anisotropy parameter \xi= b_s/b_t = 3.5, a spatial lattice spacing of b_s=0.1227\pm 0.0008 fm, and pion mass of m_\pi ~ 390 MeV. Ground state baryon masses are extracted with fully quantified uncertainties that are at or below the ~0.2%-level in lattice units. The lowest-lying negative-parity states are also extracted albeit with a somewhat lower level of precision. In the case of the nucleon, this negative-parity state is above the N\pi threshold and, therefore, the isospin-1/2 \pi N s-wave scattering phase-shift can be extracted using Luescher's method. The disconnected contributions to this process are included indirectly in the gauge-field configurations and do not require additional calculations. The signal-to-noise ratio in the various correlation functions is explored and is found to degrade exponentially faster than naive expectations on many time-slices. This is due to backward propagating states arising from the anti-periodic boundary conditions imposed on the quark-propagators in the time-direction. We explore how best to distribute computational resources between configuration generation and propagator measurements in order to optimize the extraction of single baryon observables

    Extracting Scattering Phase-Shifts in Higher Partial-Waves from Lattice QCD Calculations

    Full text link
    L\"uscher's method is routinely used to determine meson-meson, meson-baryon and baryon-baryon s-wave scattering amplitudes below inelastic thresholds from Lattice QCD calculations - presently at unphysical light-quark masses. In this work we review the formalism and develop the requisite expressions to extract phase-shifts describing meson-meson scattering in partial-waves with angular-momentum l<=6 and l=9. The implications of the underlying cubic symmetry, and strategies for extracting the phase-shifts from Lattice QCD calculations, are presented, along with a discussion of the signal-to-noise problem that afflicts the higher partial-waves.Comment: 79 pages, 41 figure

    SU(2) Low-Energy Constants from Mixed-Action Lattice QCD

    Full text link
    An analysis of the pion mass and pion decay constant is performed using mixed-action Lattice QCD calculations with domain-wall valence quarks on ensembles of rooted, staggered n_f = 2+1 MILC configurations. Calculations were performed at two lattice spacings of b~0.125 fm and b~0.09 fm, at two strange quark masses, multiple light quark masses, and a number of lattice volumes. The ratios of light quark to strange quark masses are in the range 0.1 <= m_l / m_s <= 0.6, while pion masses are in the range 235 < m_\pi < 680 MeV. A two-flavor chiral perturbation theory analysis of the Lattice QCD calculations constrains the Gasser-Leutwyler coefficients bar{l}_3 and bar{l}_4 to be bar{l}_3 = 4.04(40)(+73-55) and bar{l}_4 = 4.30(51)(+84-60). All systematic effects in the calculations are explored, including those from the finite lattice space-time volume, the finite lattice spacing, and the finite fifth dimension in the domain-wall quark action. A consistency is demonstrated between a chiral perturbation theory analysis at fixed lattice spacing combined with a leading order continuum extrapolation, and the mixed-action chiral perturbation theory analysis which explicitly includes the leading order discretization effects. Chiral corrections to the pion decay constant are found to give f_\pi / f = 1.062(26)(+42-40) where f is the decay constant in the chiral limit. The most recent scale setting by the MILC Collaboration yields a postdiction of f_\pi = 128.2(3.6)(+4.4-6.0)(+1.2-3.3) MeV at the physical pion mass.Comment: 28 pages, 9 figures; version 2 accepted for publication in PR
    • …
    corecore