81 research outputs found

    Triple-isotope analysis in tree-ring cellulose suggests only moderate effects of tree species mixture on the climate sensitivity of silver fir and Douglas-fir.

    Get PDF
    Disentangling the factors influencing the climate sensitivity of trees is crucial to understanding the susceptibility of forests to climate change. Reducing tree-to-tree competition and mixing tree species are two strategies often promoted to reduce the drought sensitivity of trees, but it is unclear how effective these measures are in different ecosystems. Here, we studied the growth and physiological responses to climate and severe droughts of silver fir and Douglas-fir growing in pure and mixed conditions at three sites in Switzerland. We used tree-ring width (TRW) data and carbon (δ13C), oxygen (δ18O) and hydrogen (δ2H) stable isotope ratios from tree-ring cellulose to gain novel information on water relations and the physiology of trees in response to drought and how tree species mixture and competition modulate these responses. We found significant differences in isotope ratios between trees growing in pure and mixed conditions for the two species, although these differences varied between sites, e.g. trees growing in mixed conditions had higher δ13C values and TRW than trees growing in pure conditions for two of the sites. For both species, differences between trees in pure and mixed conditions regarding their sensitivity to temperature, precipitation, climatic water balance and vapor pressure deficit (VPD) were minor. Further, trees growing in pure and mixed conditions showed similar responses of TRW and isotope ratios to the past severe droughts of 2003, 2015 and 2018. Competition had only a significantly negative effect on δ13C of silver fir, which may suggest a decrease in photosynthesis due to higher competition for light and nutrients. Our study highlights that tree species mixture may have only moderate effects on the radial growth and physiological responses of silver fir and Douglas-fir to climatic conditions and that site condition effects may dominate over mixture effects

    Determination of in situ dissolved inorganic carbon concentration and alkalinity for marine sedimentary porewater

    Get PDF
    Dissolved inorganic carbon (DIC) concentration and total alkalinity in marine sediment vary with biological activity, mineral diagenesis and past bottom ocean water composition. Reliable interpretation of this data is often compromised due to precipitation of calcium carbonate (CaCO3) during sediment recovery, processing and sample storage. Here we present and test a method that corrects for this precipitation and consequently allows quantification of in situ carbonate system chemistry. Our method relies on the over-determination of the dissolved carbonate system by (i) measuring DIC, alkalinity and calcium, and (ii) explicitly assuming CaCO3 saturation in the sediment. We experimentally tested this method using data from Integrated Ocean Drilling Program (IODP) Site U1368 in the South Pacific Gyre. Our results show that we can accurately reproduce in situ aqueous carbonate system chemistry if DIC, alkalinity and calcium concentration are measured simultaneously. At Site U1368, the correction for sampling associated precipitation is equivalent to 4.5 and 8.9% of the measured DIC and alkalinity, respectively. The method is well suited for any sediment porewater that is saturated with respect to calcium carbonate; consequently, it is applicable for approximately 50% of the global oceanic seafloor

    Termination of Ethereum's Smart Contracts

    Get PDF
    Ethereum is a decentralized blockchain technology equipped with so-called Smart Contracts. A contract is a program whose code is public, which can be triggered by any user, and whose actual execution is performed by miners participating in Ethereum. Miners execute the contract on the Ethereum Virtual Machine (EVM) and apply its effect by adding new blocks to the blockchain. A contract that takes too much time to be processed by the miners of the network may result into delays or a denial of service in the Ethereum system. To prevent this scenario, termination of Ethereum's Smart Contracts is ensured using a gas mechanism. Roughly, the EVM consumes gas to process each instruction of a contract and the gas provided to run a contract is limited. This technique could make termination of contracts easy to prove but the way the official definition of the EVM specifies gas usage makes the proof of this property non-trivial. EVM implementations and formal analysis techniques of EVM's Smart Contracts use termination of contracts as an assumption, so having a formal proof of termination of contracts is crucial. This paper presents a mechanized, formal, and general proof of termination of Smart Contracts based on a measure of EVM call stacks

    Dust, Volcanic Ash, and the Evolution of the South Pacific Gyre through the Cenozoic

    Get PDF
    We examine the 0–100 Ma paleoceanographic record retained in pelagic clay from the South Pacific Gyre (SPG) by analyzing 47 major, trace, and rare earth elements in bulk sediment in 206 samples from seven sites drilled during Integrated Ocean Drilling Program Expedition 329. We use multivariate statistical analyses (Q-mode factor analysis and multiple linear regression) of the geochemical data to construct a model of bulk pelagic clay composition and mass accumulation rates (MAR) of six end-members, (post-Archean average Australian shale, rhyolite, basalt, Fe-Mn-oxyhydroxides, apatite, and excess Si). Integrating the results with Co-based age models at Sites U1365, U1366, U1369, and U1370, we link changes in MAR of these components to global oceanographic, terrestrial, and climatic transformations through the Cenozoic. Our results track the spatial extent (thousands of kilometers) of dust deposition in the SPG during the aridification of Australia. Dispersed ash is a significant component of the pelagic clay, often comprising \u3e50% by mass, and records episodes of Southern Hemisphere volcanism. Because both are transported by wind, the correlation of dust and ash MAR depends on the site\u27s latitude and suggests meridional shifts in the position of atmospheric circulation cells. The hydrothermal MARs provide evidence for rapid deposition from the Osbourn Trough spreading ridge before it went extinct. Excess Si MARs show that the abrupt increase in siliceous productivity observed at Site U1371 also extended at least as far north as Sites U1369 and U1370, suggesting large-scale reorganizations of oceanic Si distributions ~10–8 Ma in the southern SPG

    Relationship of bacterial richness to organic degradation rate and sediment age in subseafloor sediment

    Get PDF
    © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Applied and Environmental Microbiology 82 (2016): 4994-4999, doi:10.1128/AEM.00809-16.Subseafloor sediment hosts a large, taxonomically rich and metabolically diverse microbial ecosystem. However, the factors that control microbial diversity in subseafloor sediment have rarely been explored. Here we show that bacterial richness varies with organic degradation rate and sediment age. At three open-ocean sites (in the Bering Sea and equatorial Pacific) and one continental margin site (Indian Ocean), richness decreases exponentially with increasing sediment depth. The rate of decrease in richness with depth varies from site to site. The vertical succession of predominant terminal electron acceptors correlates to abundance-weighted community composition, but does not drive the vertical decrease in richness. Vertical patterns of richness at the open-ocean sites closely match organic degradation rates; both properties are highest near the seafloor and decline together as sediment depth increases. This relationship suggests that (i) total catabolic activity and/or electron donor diversity exerts a primary influence on bacterial richness in marine sediment, and (ii) many bacterial taxa that are poorly adapted for subseafloor sedimentary conditions are degraded in the geologically young sediment where respiration rates are high. Richness consistently takes a few hundred thousand years to decline from near-seafloor values to much lower values in deep anoxic subseafloor sediment, regardless of sedimentation rate, predominant terminal electron acceptor, or oceanographic context.This work, including the efforts of Mitchell L. Sogin and Steven D’Hondt, was funded by Sloan Foundation (Census of Deep Life). This work, including the efforts of Steven D’Hondt, was funded by U.S. Science Support Program for IODP. This work, including the efforts of Steven D’Hondt, was funded by National Science Foundation (NSF) (OCE- 0752336 and OCE-0939564). The work of E. A. Walsh, J. B. Kirkpatrick, R. Pockalny, and J. Sauvage was funded by the grants to S. D’Hondt

    The Contribution of Water Radiolysis to Marine Sedimentary Life

    Get PDF
    Water radiolysis continuously produces H2 and oxidized chemicals in wet sediment and rock. Radiolytic H2 has been identified as the primary electron donor (food) for microorganisms in continental aquifers kilometers below Earth’s surface. Radiolytic products may also be significant for sustaining life in subseafloor sediment and subsurface environments of other planets. However, the extent to which most subsurface ecosystems rely on radiolytic products has been poorly constrained, due to incomplete understanding of radiolytic chemical yields in natural environments. Here we show that all common marine sediment types catalyse radiolytic H2 production, amplifying yields by up to 27X relative to pure water. In electron equivalents, the global rate of radiolytic H2 production in marine sediment appears to be 1-2% of the global organic flux to the seafloor. However, most organic matter is consumed at or near the seafloor, whereas radiolytic H2 is produced at all sediment depths. Comparison of radiolytic H2 consumption rates to organic oxidation rates suggests that water radiolysis is the principal source of biologically accessible energy for microbial communities in marine sediment older than a few million years. Where water permeates similarly catalytic material on other worlds, life may also be sustained by water radiolysis

    Human Skin Microbiota: High Diversity of DNA Viruses Identified on the Human Skin by High Throughput Sequencing

    Get PDF
    The human skin is a complex ecosystem that hosts a heterogeneous flora. Until recently, the diversity of the cutaneous microbiota was mainly investigated for bacteria through culture based assays subsequently confirmed by molecular techniques. There are now many evidences that viruses represent a significant part of the cutaneous flora as demonstrated by the asymptomatic carriage of beta and gamma-human papillomaviruses on the healthy skin. Furthermore, it has been recently suggested that some representatives of the Polyomavirus genus might share a similar feature. In the present study, the cutaneous virome of the surface of the normal-appearing skin from five healthy individuals and one patient with Merkel cell carcinoma was investigated through a high throughput metagenomic sequencing approach in an attempt to provide a thorough description of the cutaneous flora, with a particular focus on its viral component. The results emphasize the high diversity of the viral cutaneous flora with multiple polyomaviruses, papillomaviruses and circoviruses being detected on normal-appearing skin. Moreover, this approach resulted in the identification of new Papillomavirus and Circovirus genomes and confirmed a very low level of genetic diversity within human polyomavirus species. Although viruses are generally considered as pathogen agents, our findings support the existence of a complex viral flora present at the surface of healthy-appearing human skin in various individuals. The dynamics and anatomical variations of this skin virome and its variations according to pathological conditions remain to be further studied. The potential involvement of these viruses, alone or in combination, in skin proliferative disorders and oncogenesis is another crucial issue to be elucidated

    In-situ mechanical weakness of subducting sediments beneath a plate boundary décollement in the Nankai Trough

    Get PDF
    © 2018, The Author(s). The study investigates the in-situ strength of sediments across a plate boundary décollement using drilling parameters recorded when a 1180-m-deep borehole was established during International Ocean Discovery Program (IODP) Expedition 370, Temperature-Limit of the Deep Biosphere off Muroto (T-Limit). Information of the in-situ strength of the shallow portion in/around a plate boundary fault zone is critical for understanding the development of accretionary prisms and of the décollement itself. Studies using seismic reflection surveys and scientific ocean drillings have recently revealed the existence of high pore pressure zones around frontal accretionary prisms, which may reduce the effective strength of the sediments. A direct measurement of in-situ strength by experiments, however, has not been executed due to the difficulty in estimating in-situ stress conditions. In this study, we derived a depth profile for the in-situ strength of a frontal accretionary prism across a décollement from drilling parameters using the recently established equivalent strength (EST) method. At site C0023, the toe of the accretionary prism area off Cape Muroto, Japan, the EST gradually increases with depth but undergoes a sudden change at ~ 800 mbsf, corresponding to the top of the subducting sediment. At this depth, directly below the décollement zone, the EST decreases from ~ 10 to 2 MPa, with a change in the baseline. This mechanically weak zone in the subducting sediments extends over 250 m (~ 800–1050 mbsf), corresponding to the zone where the fluid influx was discovered, and high-fluid pressure was suggested by previous seismic imaging observations. Although the origin of the fluids or absolute values of the strength remain unclear, our investigations support previous studies suggesting that elevated pore pressure beneath the décollement weakens the subducting sediments. [Figure not available: see fulltext.]
    corecore