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Dissolved inorganic carbon (DIC) concentration and total alkalinity in marine sediment vary with biological
activity, mineral diagenesis and past bottom ocean water composition. Reliable interpretation of this data is
often compromised due to precipitation of calcium carbonate (CaCO3) during sediment recovery, processing
and sample storage.
Here we present and test a method that corrects for this precipitation and consequently allows quantification of
in situ carbonate system chemistry. Ourmethod relies on the over-determination of the dissolved carbonate sys-
tem by (i) measuring DIC, alkalinity and calcium, and (ii) explicitly assuming CaCO3 saturation in the sediment.
We experimentally tested this method using data from Integrated Ocean Drilling Program (IODP) Site U1368 in
the South Pacific Gyre. Our results show that we can accurately reproduce in situ aqueous carbonate system
chemistry if DIC, alkalinity and calciumconcentration aremeasured simultaneously. At Site U1368, the correction
for sampling associated precipitation is equivalent to 4.5 and 8.9% of themeasured DIC and alkalinity, respective-
ly. The method is well suited for any sediment porewater that is saturated with respect to calcium carbonate;
consequently, it is applicable for approximately 50% of the global oceanic seafloor.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

The present-day composition of sedimentary porewater results from
both ongoing sedimentary processes and past bottom water composi-
tion (Gieskes, 1975; Berner, 1980; McDuff, 1985; Adkins and Schrag,
2003). Dissolved inorganic carbon (DIC) and alkalinity measurements
of pore fluid are used to understand current subseafloormicrobial activ-
ity (D'Hondt et al., 2004), and could also be used to understand past
changes in ocean chemistry if in situ concentrations were quantified
precisely and accurately. However, measured DIC and alkalinity are
often subject to post recovery artifacts due to calcium carbonate precip-
itation. In this paper, we present and test a method for correcting mea-
sured pore fluid DIC and alkalinity for these artifacts.

DIC (H2CO3+HCO3
−+CO3

2−) is a major product of microbial respi-
ration in the subseafloor biosphere (D'Hondt et al., 2002). Microbial
activities in deeply buried sediment are highly diverse, occur at low
rates, and are difficult to constrainwith conventional radiotracer exper-
iments (D'Hondt et al., 2004). One way to study net rates of biogeo-
chemical reactions in subseafloor sediment is by transport-reaction

modeling (e.g. Berner, 1964; Froelich et al., 1979; Schulz, 2000). A fun-
damental requirement of this approach is accurate knowledge of in situ
dissolved concentration of metabolites.

In addition to constrainingmetabolic pathways and rates, pore fluid
DIC and alkalinity should also reflect the CO2 partial pressure (PCO2) and
carbonate (CO3

2−) concentration of bottomwaters. Pore fluids contain a
record of past ocean salinity and have been used to reconstruct salinity
distribution during the last glacialmaximum(Adkins and Schrag, 2003).
In principle, once effects of subseafloor respiration and carbonate disso-
lution have been accounted for, a similar approach can be applied to DIC
and alkalinity from which PCO2 and CO3

2− are calculated. Reconstruc-
tions of PCO2 and CO3

2− are valuable because theywould place important
constraints on glacial/interglacial PCO2 variations in the distribution of
carbon between the ocean, atmosphere and land (e.g. Yu et al., 2010).
Therefore, reliable determination of past PCO2 in pore fluid ultimately
also depends on the precise and accuratemeasurement of DIC and alka-
linity in situ.

Measured values of alkalinity, DIC and related constituents in
porewater [e.g. calcium (Ca2+), phosphate (PO4

3−), magnesium
(Mg2+) and sulfate (SO4

2−)] deviate from in situ abundances (Sayles
and Manheim, 1975; Paull et al., 1996). Decompression and warming
of the sediment during core recovery, followed by core handling and
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storage, induces precipitation of calcium carbonate due to the pressure
and temperature dependence of its solubility. As a result, measured DIC
and alkalinity are commonly lower than in situ values. Sample handling
and processing frequently results in samples being stored for hours
(or even days) prior to analysis, leaving ample time for carbonate pre-
cipitation. In general, larger time intervals between fluid extraction
and core recovery lead to larger deviations from in situ values. Conse-
quently, for accurate use of carbonate-related porewater chemistry
data, it is critical to have a method for correctingmeasured abundances
to in situ values.

Here,wepresent a rigorous technique for quantifying in situ dissolved
inorganic carbon system chemistry in subseafloor sediment. One major
assumption of our method is in situ sediment porewater saturation
with respect to calcium carbonate. This assumption is critical for correct
application of the method and should thus be carefully evaluated before
its utilization. This technique does not require additional coring and pro-
cessing time. We provide experimental validation of our approach using
sedimentary porefluid concentration profiles of DIC, alkalinity, Ca2+, and
other dissolved species collected from Site U1368 during Integrated
Ocean Drilling Program (IODP) Expedition 329.

2. Theory of the method

2.1. Conceptual framework

The central concept of our method is that measurement of three
carbonate-system parameters (i.e. DIC, alkalinity and Ca2+) in the
porewater allows us to mathematically over-determine the carbonate
system (e.g., CO3

2−, bicarbonate (HCO3
−), carbonic acid (H2CO3) and

pH) if calcium carbonate saturation is assumed. That is, if no calcium
carbonate precipitated during sample recovery or storage, there is
a unique mathematical solution for the various over-determined equi-
libria of the in-situ carbonate system chemistry. In contrast, if the
porewater re-equilibrated during core recovery (due to pressure and
temperature changes), there will be no consistent mathematical solu-
tion for the in situ carbonate chemistry unless the amount of calcium
carbonate precipitated is quantified. We therefore take advantage of
the over-determined character of the system to calculate the amount
calcium carbonate that precipitated during core recovery and sample
handling.

By calculating the amount of carbonate lost during sample recovery
and storage, we can correct the measured dissolved DIC concentration
and alkalinity to actual in situ values. Once in situ DIC and alkalinity
are known, we can quantify in situ pH, the in situ concentrations of
the remaining carbon system components (i.e. H2CO3, HCO3

−, CO3
2−,

etc.), and the in situ concentrations of the pH-dependent minor species
included in total alkalinity (i.e. B(OH)4−, SiO(OH)3−, PO4

3−, HSO4
− etc.).

The fundamentals of this approach were first put forward by Wang
et al. (2010); we revise and test them in this study. This method is
only applicable if sediment porewater is saturated with respect to calci-
um carbonate. In the case of saturation with respect to other carbonate
phases or minerals (e.g. FeCO3, MnCO3, aragonite, dolomite), the meth-
od won't be as accurate because more equivalents of alkalinity will be
removed through precipitation of non-calcitic phases. We therefore
emphasize close scrutiny of the in situ state of the porewater chemistry
before application of the method.

2.2. Iteration process

Based on measured [alkalinity], [DIC] and [Ca2+] (i.e.,
[alkalinity]measured, [DIC]measured and [Ca2+]measured, respectively),
we solve for the amount of carbonate precipitated (in units of
moles per mass of pore fluid) during recovery and sampling,
referred to as “excess carbonate”, or XCaCO3

, together with the
complete in situ aqueous carbonate system chemistry and related
chemical species. While there is more than one way to solve this

set of simultaneous equations, we use a relatively simple iterative
method that avoids cubic equations. A combination of mass-
balance relationships, equilibrium reactions between species in
solution, and thermodynamics relationships forms the core of
the iteration algorithm. As such,

½DIC�≡½H2CO3� þ ½HCO−
3 � þ ½CO2−

3 � ð1Þ
½alkalinity�≡½HCO−

3 � þ 2½CO2−
3 � þ ½BðOHÞ−4 � þ ½OH−� þ ½HPO2−

4 �
þ 2½PO3−

4 � þ ½SiOðOHÞ−3 � þ ½NH3� þ ½HS−�
þ …−½Hþ�f−½HSO−

4 �−½HF�−½H3PO4�−… ð2Þ

In situ abundances of the threemeasured components (i.e. [DIC]in_situ,
[alkalinity]in_situ, and [Ca2+]in_situ) are,

DIC½ �in situ ¼ DIC½ �measured þ XCaCO3
ð3Þ

alkalinity½ �in situ ¼ alkalinity½ �measured þ 2XCaCO3
ð4Þ

Ca2þ
h i

in situ
¼ Ca2þ
h i

measured
þ XCaCO3

: ð5Þ

By assuming calcite saturation in situ and using Eq. (5) we derive,

CO3
2−

h i
Ca2þ
h i

measured
þ XCaCO3

� �
¼ K�

sp T;P; Sð Þ ð6Þ

with K⁎sp(T,P,S) the solubility product of calcite at in situ temperature,
salinity and pressure.

For algebraic simplicity, we combine all the components of minor
contribution to the DIC and alkalinity mass balance relative to HCO3

−,
CO3

2− and B(OH)4− into a grouped term, labeled “minor species”:

minor species½ � ≡ H2CO3½ �− OH−½ �− HPO4
2−

h i
−2 PO4

3−
h i

− SiO OHð Þ3−
� �

− NH3½ �− HS−½ � þ
Hþh i

f
þ HSO4

−½ � þ HF½ � þ H3PO4½ �

ð7Þ

With [H+]f the free hydrogen concentration ([H+]f = [H+] −
[HSO4

−]), indicating that only the hydrated forms of the ion are included.
Substituting Eq. (3) through Eq. (5) into the DIC and total alkalinity

mass balance expressions (i.e. Eq. (1) and Eq. (2), respectively), we de-
rive:

alkalinity½ �measured− DIC½ � þ XCaCO3
¼ CO3

2−
h i

þ B OHð Þ4−
� �

− minor species½ � ð8Þ

2 DIC½ �measured− alkalinity½ �measured ¼ HCO3
−½ � þ H2CO3½ �− B OHð Þ4−

� �
þ minor species½ �: ð9Þ

Rearranging and combining Eq.(1) through Eq.(9) we derive a set of
equations that form a uniquely determined system that can be solved
for XCaCO3

and, subsequently, the complete carbonate system chemistry.
This is done through iteration of a series mass-balance and equilibrium
relationships that also consider theminor species included in total alka-
linity. To simplify the solution, the iteration procedure neglects the
minor species [i.e. Eq. (7)] for the initial iteration. In the second iteration
the minor species, determined in the first iteration, is incorporated
into the equation set. The following iterations subsequently refine the
calculated species concentrations until a stable solution is attained.
After five iterations the difference between XCaCO3

calculated in the
last iteration and in the iteration to the last round is not greater than
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1E-9 mol kg−1. This demonstrates that the iteration scheme converges
rapidly, and results in a stable solution for the abundance of in situ
carbonate system species and other related components. Also, the sta-
bility of the algorithm is independent of the relative size of the
measured DIC and alkalinity concentration. We give a detailed descrip-
tion of the method in Appendix-A1. A Matlab-code of the calculation
method is also available online as an electronic supplement.

2.3. Thermodynamic constants

We calculate equilibrium and solubility constants for the acid disso-
ciation reactions and calcium carbonate, respectively, at in situ salinity,
temperature and pressure (Millero, 1983; Zeebe and Wolf-Gladrow,
2001; Dickson et al., 2007). Equilibrium constants are on the total
hydrogen ion concentration scale (Millero et al., 2006; Dickson et al.,
2007). The details of the calculation steps for the determination of in
situ equilibrium constant are given in Appendix-A1.

3. Assessment

3.1. Application of the method using water column data

To validate the method computationally and conceptually, we apply
the approach using modern water column data [concentrations of DIC,
alkalinity, silica, and phosphate, together with salinity and temperature
data (location 27°S 123°W)] from the Hydrographic Atlas of the World
Ocean Circulation Experiment, WOCE (Talley, 2007). For this method-
evaluation effort, we implicitly assume that the water-column total al-
kalinity and DIC concentration measurements from the WOCE Pacific
Atlas are not subject to pressure and temperature artifacts. If the

algorithm works properly and has correctly calculated the thermody-
namic constants, “excess carbonate” (XCaCO3

) will be zero mol kg−1 at
the carbonate saturation horizon (above this depth, XCaCO3

will be nega-
tive, and below this depth, it will be positive).

The algorithm correctly positions the level of the calcite saturation
horizon at a water depth of 2785 m indistinguishable from the depth
of an independent calculation of the saturation horizon (Williams and
Follows, 2011). It is also consistent with in situ dissolution experiments
(Peterson, 1966). XCaCO3

is negative above 2875 m depth, zero at
2875 m, and positive below (where there is undersaturation, Fig. 1). A
positive XCaCO3

implies that to reach saturation, calcium carbonate
must precipitate, while a negative XCaCO3

implies calcium carbonate
dissolution is required to reach saturation. This result supports the va-
lidity of the algorithm, and the proposed thermodynamic framework
to describe experimentally observed calcite dissolution.

3.2. Experimental validation test

3.2.1. Porewater collection and analytical methods
We tested the method using published pore fluid concentration data

from IODP Expedition 329 to the South Pacific Gyre (D'Hondt et al.,
2011). The data is from IODP Site U1368, located at 3470 m water
depth, near the center of the Gyre (27°55′S, 123°10′W). Site U1368 is in
a region of seamount topography, within magnetic polarity Chron 5ABn
[basement age of ca. 13.36–13.0 Ma (Gradstein et al., 2012)] (Fig. 2).
The slowly deposited sediment (i.e. 0.1 to 1 m per million years) at Site
U1368 consists of a 16-m sequence of calcareous ooze, pelagic clay and
lithic sand (D'Hondt et al., 2011). Smear-slide analysis revealed
nannofossils, red-brownish semi-opaque oxides and foraminifera as the
principal components of the ooze. The clay-rich and sandy intervals
contain a wide variety of minerals (e.g. albite, anorthite, calcite and he-
matite). The sediment sequence is differentiated into three lithologic
units based on compositional and textural characteristics: (i) an upper
nannofossil-rich ooze and marl unit [0 to 14 m], (ii) a middle dark color
nannofossil-bearing clay unit [14 to 15.5 m] and (iii) a hematitic
nannofossil-bearing clay unit intercalated with sandy intervals in
the lowermost part of the sequence [15.5 to 16 m] (Expedition 329
Scientists, 2011a, 2011b). Calcium carbonate is abundant throughout
the sequence.

Porewater of Site U1368 sediment was extracted from 10-cm long
whole-core rounds using the standard Ti IODP squeezers (Manheim,
1966). Two core handling-and-storage procedures were adopted. In
one procedure, we did not minimize storage and handling time of
whole-round samples before porewater extraction. We refer to this as
the ‘conventional process’. In contrast, we designed the second proce-
dure tominimize the timebetween core retrieval and porewater extrac-
tion in order tominimize carbonate precipitation.We refer to this as the
‘rapid process’. We recorded the amount of time betweenwhen the core
was taken from the seafloor, brought to the rig floor, brought to the
chemistry lab, and finally when the porewater was extracted. Sample
handling and laboratory storage time for the conventionally processed
samples varied from a couple of hours to as long as seven hours. The
rapidly processed samples were stored for less than two hours before
extraction (Fig. 3A; Expedition 329 Scientists, 2011b, 2011c). For both
procedures, core samples that could not be processed right away were
stored in a 4 °C refrigerator in their core liner until they could be extract-
ed and squeezed. Characteristic prevailing temperature in the laborato-
ry was 20 °C. After porewater extraction samples were stored in a
refrigerator (4 °C) in sealed vials that minimize CO2 loss until they
could be analyzed.

Porewater was collected from 33 whole-round samples of Site
U1368 Hole C. Spatial resolution was approximately one sample every
50 cm. Eleven of the whole-round samples taken for porewater chemis-
try analysis were rapidly processed samples (Expedition 329 Scientists,
2011b).

Fig. 1. Evolution of XCaCO3
(excess carbonate) throughout the water-column for the region

located in the heart of the South Pacific Gyre. Negative XCaCO3
values point to calcite super-

saturation, XCaCO3
equaling zero represents the calcite saturation horizon and positive

XCaCO3
values point to undersaturation with respect to calcite. A value of zero mol kg−1

for XCaCO3
is reached at 2875 m.
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Porewater analytes thatwere key for this study and that are required
in the iterative process include the concentrations of DIC, alkalinity, cal-
cium, chloride, sulfate, phosphate, and silica (see Appendix-A1). Total
alkalinity was determined by Gran titration utilizing an autotritrator
(Metrohm 809 Titrando), and DIC was measured with an Aurora 1030
total organic carbon analyzer. Sulfate and chloride concentrations
were quantifiedwith aMetrohm861Advanced Compact ion chromato-
graph. Phosphate and dissolved silica concentrations were determined
using an OI analytical discrete analyzer (DA3500) spectrophotometer.
Concentrations of calcium and other cations (i.e., Mg, Na and K) in
the pore fluid were obtained by inductively coupled plasma-emission
spectrometry (ICP-AES) with a Teledyne Prodigy high-dispersion ICP

spectrometer. Detailed descriptions of the shipboard pore fluid geo-
chemical campaign, including details of the method are in the Proceed-
ings of IODP, Volume 329 (2011).

The observed relative standard deviation of alkalinitymeasurements
on standard seawater (i.e. CRM94,with TA= 2.222mM)was0.80%.We
assign the same relative standard deviation to our samples. The pooled
relative standard deviation of triplicate DIC measurements of all the
samples at Site U1368 was 0.59% uncertainty. The uncertainty for chlo-
ride and sulfatemeasurementswas 0.09% and 0.05%, respectively, as es-
timated based on duplicate analyses of all samples involved in the study.
The precision of the cation measurements were 0.6% of the measured
Ca, 0.7% of the measured Mg value, 0.5% of the measured Na value,

Fig. 2. IODP Expedition 329, Site U1368 location used in the evaluation of the method.

Fig. 3. (A) Total time in hours to get from the sample recovery stage to the squeezing and analysis stage for each conventionally processed porewater sample (▼) and rapidly processed
sample (•) from Site U1368, Hole C. Sediment depth is in units of meters below seafloor (mbsf). (B) Depth profiles of measured total alkalinity, (C) dissolved inorganic carbon (DIC),
and (D) calcium concentrations, for conventionally processed samples (▼) and rapidly processed samples (•).
Data from Expedition 329 Shipboard Scientific party (2011b).

69J. Sauvage et al. / Chemical Geology 387 (2014) 66–73



and 0.6% of the measured K value, based on replicate analyses of the
IAPSO standard seawater and other internal matrix matched standards
(Shipboard Scientific Party, 2011). Lastly, the uncertainty of dissolved
silica and phosphate measurements was 1.4% and 10%, as estimated
from the pooled standard deviation of duplicate and triplicatemeasure-
ments of each porewater sample, respectively.

We use themeasured in situ bottomwater temperature and thermal
gradient of Site U1368 (i.e. 1.6 °C and 113 °C km−1, respectively) to
calculate in situ downhole temperature.We assume the in situ pressure
to be hydrostatic and calculate it fromwater depth and sediment depth,
considering average ocean water density. Downhole salinity is inferred
based on measured porewater chloride, although it should be recog-
nized that this is an approximation, as the concept of salinity usually
assumes a constant proportion of dissolved constituents.

3.2.2. Data description
Total alkalinity anddissolved inorganic carbon (for both conventional-

ly and rapidly processed samples) exhibit similar behavior with depth,
starting at 2.682 and 2.553 mmol kg−1, respectively, and gradually
decreasing with depth to a value of 2.427 and 2.373mmol kg−1, respec-
tively, at the bottom of the sequence (Fig. 3B–D). The general downhole
pattern of the DIC and alkalinity profile for the conventional samples at
Site U1368 clearly deviates from the smooth profile expected due to dif-
fusion. Some fraction of this deviation is due to the analytical uncertainty
of themeasurement. The presence ofmultiple and irregular offsets in the
carbonate chemistry profiles for conventional samples emphasize the
significant impact of alteration on the measured chemistry and thus
the need to correct these biased measurements for accurate use of the
data. In contrast to conventional samples, the DIC and alkalinity profile
resulting from the rapid sampling process more closely tends toward a
smooth diffusive profile.

We assess the impact of storage time by comparing rapid process
versus conventional porewater chemistry data throughout the analyzed
sequence. Alkalinity and DIC abundances in conventionally processed
samples are consistently lower than in rapidly processed samples
(i.e. 0.172 mmol kg−1 and 0.126 mmol kg−1 lower concentrations, re-
spectively, averaged over the entire sequence). These differences reflect
a greater extent of carbonate precipitation in the case of conventionally
processed samples.

The deviation in DIC and alkalinity concentration between conven-
tionally and rapidly processed samples is not uniform and is consistently
larger than can be explained by analytical uncertainty. The difference in
measured concentration between rapidly and conventionally processed
samples downhole is unidirectional (the conventionally processed sam-
ples exhibit consistently lower values), suggesting that these variations
are real. The occurrence and variability of storage effects on measured
DIC and alkalinity illustrate the need to better quantify these effects.

Storage effects on measured calcium concentrations are unclear
given the precision of the availablemeasurements (the Ca2+ concentra-
tion difference between rapidly and conventionally processed samples
lies within the analytical uncertainty of themeasurement). Abundances
of other dissolved species, including the remaining cations (magnesium,
sodium and potassium), silica, chloride, sulfate and phosphate, do not
significantly differ between rapidly squeezed samples and convention-
ally processed samples. The uniformity between rapid and conventional
process concentrations for the remaining cation concentrations sug-
gests that the porewater is not saturated with respect to other carbon-
ate phases.

3.2.3. Method validation strategy
Solid-phase calcium carbonate is between 61.3 and 87.4 wt.%

throughout the hole (Fig. 4). Other carbonate phases (e.g. CaMg(CO3)2,
SrCO3, FeCO3) are not saturated. Under these conditions, calcite rather
than aragonite is the stable calcium carbonate phase. Therefore, we pre-
sume the calcium carbonate formed during recovery and extraction at

Site U1368 to be exclusively calcite. This fulfills the fundamental
requirement for the correct application of the method.

If our methodology and assumptions for correcting for carbonate
precipitation are valid, we expect calculated in situ concentrations of
DIC, alkalinity, and calcium for the conventionally processed samples
(long storage time) and rapidly processed samples (short storage
time), to be statistically indistinguishable and to have a smooth depth
profile due to diffusion. Thus, if corrected DIC and alkalinity abundances
for rapid and conventional porewater samples are identical, this observa-
tion supports the argument that the variance between these samples is
due to carbonate precipitation following recovery and prior to analysis.

3.2.4. Assessment of experimental results
Calculated in situ abundances of themeasured components (i.e. DIC,

TA, and Ca2+) are shown in Fig. 5. Excess carbonate, (XCaCO3
), averages

0.109 mmol kg−1 and 0.060 mmol kg−1 for conventionally and rapidly
processed samples, respectively (Table 1). This shows that, on average,
4.5% of the measured [DIC] and 8.9% of the measured [alkalinity] were
lost to calcium carbonate precipitation in conventionally sampled
porewater, relative to 2.4% and 4.6% in the case of the rapidly processed
samples. Also, concentrations of calculated in situ DIC, alkalinity and cal-
cium for rapid and conventionally processed samplesfluctuate randomly
downholewithin a narrow range. This is in contrast to the unidirection-
al trend between these two sample types for the measured values,
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Fig. 4. Solid-phase calcium carbonate content of sediment at Site U1368 Hole B, expressed
as weight percent (wt.%).
Data from Expedition 329 Shipboard Scientific party (2011b).
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where rapidly processed samples are consistently higher in concentra-
tion compared to the conventionally processed ones.

We statistically estimate the analytical error, ε, associated with
calculated values of “excess carbonate” (εXCaCO3

), in situ DIC (εDICin situ
),

alkalinity (εAlkalinityin situ
) and calcium (εCa2þ in situ

) and use these to evalu-
ate the validation experiment andmethod.We assume that error due to
uncertainty in the thermodynamic constants is comparatively small.We
estimate εXCaCO3

by propagating the sum of the squares of the analytical
error of each measurement used in its calculation.

ε2XCaCO3
¼ ∂XCaCO3

∂Alkalinity

 !2

σ2
Alkalinity þ ∂XCaCO3

∂DIC

 !2

σ2
DIC þ ∂XCaCO3

∂Ca2þ

 !2

σ2
Ca2þ

ð10Þ

where σi is the precision of measurement i (with i = alkalinity, DIC or
Ca 2+).

We approximate
∂XCaCO3

∂i in Eq. (10) by numerically evaluating
ΔXCaCO3

Δi

for small Δi at the calculated value of XCaCO3 . The analytical error for
the calculated in situ values is,

ε2DICin situ
¼ 1þ 2

∂XCaCO3

∂DIC

 !" #
σ2

DIC þ ε2XCaCO3
ð11Þ

ε2Alkalinityin situ
¼ 1þ 4

∂XCaCO3

∂Alkalinity

 !" #
σ2

Alkalinity þ 2ε2XCaCO3
ð12Þ

ε2Ca2þ in situ
¼ 1þ 2

∂XCaCO3

∂Ca2þ

 !" #
σ2

Ca2þ þ ε2XCaCO3
: ð13Þ

The average analytical error estimates for calculated XCaCO3
and in situ

DIC, TA, and Ca2+ concentration are 2.20E−2 mmol kg−1 [2.09E−2–
2.34E−2 mmol kg−1], 1.8E−2 mmol kg−1 [1.7E−2–1.9E−
2 mmol kg−1], 5.4E−2 mmol kg−1 [5.1E−2–5.6E−2 mmol kg−1],
and 6.5E−2 mmol kg−1 [6.2E−2–6.9E−2 mmol kg−1], respectively
(Fig. 5). The ranges of analytical error estimates on the calculated in situ
species are narrow because the ranges in measured species are similarly
small.

The total uncertainty on the calculated values (εi,total) has multiple
components: analytical uncertainty (εi, in _ situ), sampling error, errors
related to the assumptions (i.e., thermodynamic equilibrium) and er-
rors in the thermodynamic constants. We define the method-specific
error as the error not associated with analytical uncertainty. To assess
the extent of themethod-specific error we calculate the total uncertain-
ty (εi,total2 = (method-specific error)2 + (analytical error)2) and com-
pare it to the error we expect due to analytical uncertainty only.

We quantify the total methodological precision (εi,total) by pooling
the standard deviations of the calculated in situ DIC, alkalinity and calci-
um for conventionally and rapidly processed samples at similar depths.
In other words, we define pairs of conventionally and rapidly processed
samples that consist of each rapidly processed sample and the average
of the two conventionally processed samples that immediately sandwich
(underlie and overlie) that rapidly processed sample in the stratigraphy.
We calculate the pooled standard deviation of species i as follows
(McNaught and Wilkinson, 1997):

Sp ¼ ∑ iconventional−irapid
� �2

=2 k
� �1=2

ð14Þ

where Sp is the pooled standard deviation, k the number of conventional
and rapid pairs and iconventional/rapid the calculated concentration of
species i for rapidly and conventionally (averaged) processed samples.
For Site U1368, k equals 11, which is the number of rapidly processed
samples.

The pooled standard deviations for calculated in situ DIC, alkalinity,
and calcium (εi,total) are 8.4E−2 mmol kg−1, 7.9E−2 mmol kg−1 and
0.16 mmol kg−1, respectively.

Since these values are larger than the uncertainty expected due
to analytical error, there is method-specific error. The methodological
precision is quantified as follows,

ε2i;method ¼ ε2i;total−ε2i;in situ: ð15Þ

The uncertainty introduced by the method amounts to 8.2E−
02 mmol kg−1, 5.7E−02 mmol kg−1, and 1.5E−01 mmol kg−1 for
the calculation of in situ DIC, TA, and Ca2+, respectively. This uncertain-
ty estimate is purely methodological and separate from the uncertainty
due to analytical precision of the chemical measurements. Part of the
methodological error may be due to CO2 loss during sample storage
and squeezing, or due to continuous precipitation of calcium carbonate
during the analysis of the different porewater solutes. The use of sealed
vials that are specifically designed to minimize CO2 loss should
minimize this methodological uncertainty. This method-specific error
is not a major impediment to application of the method as the
correction brought by themethod (4.5 and 8.9% of themeasured values
for DIC and alkalinity, respectively) is larger than the uncertainty
introduced by the method (3.2 and 2.1% for DIC and alkalinity,
respectively).

Table 1
Amount of calcium carbonate precipitation (i.e. XCaCO3

, excess carbonate) we had to ac-
count for to calculate in situ carbonate system chemistry for conventionally and rapidly
processed samples.

Depth (mbsf) XCaCO3
(mol kg−1)

Conventionally processed samples
0.55 1.227E−04
1.05 1.290E−04
2.05 9.194E−05
2.55 1.286E−04
3.55 1.078E−04
4.05 1.215E−04
5.05 1.059E−04
5.55 1.332E−04
6.55 1.308E−04
7.05 7.662E−05
7.76 2.430E−05
8.45 1.140E−04
9.05 1.302E−04
10.05 7.246E−05
10.55 9.799E−05
11.55 1.427E−04
12.05 1.628E−04
13.05 1.472E−04
13.55 1.129E−04
14.55 9.184E−05
15.05 1.286E−04
15.48 2.601E−05

Rapidly processed samples
0.05 9.629E−06
1.45 2.640E−05
2.95 3.551E−05
4.45 5.762E−05
5.95 1.281E−04
7.45 9.670E−05
9.45 8.132E−05
10.95 6.369E−05
12.45 8.038E−05
13.95 9.114E−05
15.45 6.216E−05
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4. Conclusion and application of the approach

We present a method that accounts for precipitation of CaCO3

from porewater during sediment recovery, enabling quantification of
in situ carbonate chemistry. Fundamental requirements for application
of our approach are (i) in situ calcium carbonate saturation (calcitic
phase) and (ii) equilibrium conditions. For the case of porewater satura-
tion with respect to other carbonate phases, the algorithm and its
equilibrium and solubility constant expressions should be adapted
accordingly.

Application of our approach generates a quantitatively accurate view
of the in situ dissolved carbonate system chemistry of subseafloor
sediment. It is rather straightforward if porewater alkalinity, DIC and
calcium concentration are measured for the same sample, and equili-
brium condition prevails in situ. This method is applicable for any sedi-
ment with in situ calcium carbonate saturation. Because carbonate-
bearing sediment covers about 50% of the seafloor (Schulz, 2000), the
method is widely applicable.

We tested the stability and applicability of our iteration method by
inserting sets of DIC and TA concentration values from theWOCE Pacific
Atlas to cover the range of subseafloor environments (i.e. marginal

sediments, open ocean, etc.) found beneath the global ocean. Themeth-
od resulted in stable solutions for the in situ carbonate system chemis-
try for each of these porewater chemistry scenarios, underlining the
wide applicability of themethod. This constitutes amajor improvement
over the method by Wang et al. (2010), which is unstable in many
situations (e.g., when [alkalinity]measured ≤ [DIC]measured). Our method
requires only limited calculation time, relatively simple spreadsheet-
based calculations, and no additional shipboard time and/or drilling
for its application.

We also show that this method is effective for inferring concen-
tration profiles of dissolved carbonate-related chemicals that were
not measured directly (e.g. CO3

2−, H+, OH−, HCO3
−, H2CO3, B(OH)4−,

HPO4
2−, etc.).

The subseafloor sedimentary environment used to illustrate the
proposed method (i.e. Site U1368) is extremely poor in organic matter
content and therefore did not contain any dissolved ammonia or sulfide.
However, we have designed the method to also be operational in more
organic-rich environments, where these solutes might be present and
should thus be accounted for in the total alkalinity term.

Finally, we demonstrate quantitatively that chemical alteration
associated with core retrieval and handling processes can be significant.

Fig. 5. Sediment depth profiles of calculated in situ TA, DIC and Ca2+ concentrations with analytical error analysis (1σ) for conventionally (▼) and rapidly processed (•) samples from Site
U1368 Hole C.
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For example, in the case of Site U1368, the measured DIC and TA abun-
dances were offset by up to four and eight percent from in situ values,
respectively. Such bias can strongly lower estimates of subseafloormet-
abolic activities and provide poor constraints for reconstruction of past
deep ocean chemistry.

Consequently, application of this approach will contribute to better
assessment of microbial metabolic activity rates in subseafloor environ-
ments and improve quantitative reconstructions of deep ocean chemis-
try through the last glacial–interglacial cycle.
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