68 research outputs found

    Genetic markers for SSG-resistance in Leishmania donovani and SSG-treatment failure of visceral leishmaniasis patients in the Indian subcontinent

    Get PDF
    The current standard to assess pentavalent antimonial (SSG) susceptibility of Leishmania is a laborious in vitro assay of which the result has little clinical value because SSG-resistant parasites are also found in SSG-cured patients. Candidate genetic markers for clinically relevant SSG-resistant parasites identified by full genome sequencing were here validated on a larger set of clinical strains. We show that 3 genomic locations suffice to specifically detect the SSG-resistant parasites found only in patients experiencing SSG treatment failure. This finding allows the development of rapid assays to monitor the emergence and spread of clinically relevant SSGresistant Leishmania parasites

    MS in South Asians in England: early disease onset and novel pattern of myelin autoimmunity.

    Get PDF
    BACKGROUND: Epidemiological studies describe a latitude gradient for increased MS prevalence and a preponderance of disease in Caucasian individuals. However, individuals from other ethnic backgrounds and low-risk regions can acquire a raised risk through migration. Nearly a fifth of the London population is of Asian/Asian-British origin and a significant proportion of referrals are from this group. METHODS: We investigated whether there were differences in timing, presentation, severity, and immunology of disease (with respect to CD4 myelin epitope recognition) between individuals in London with MS who were either of S. Asian or Caucasian origin. Individuals of S. Asian origin with MS were compared with healthy S. Asian controls, individuals with MS and of Caucasian origin and Caucasian controls. RESULTS: Age at MS onset is significantly lower in the S. Asian group, attributable to earlier onset specifically in UK-born individuals, though clinical presentation is similar. Analysis of CD4 autoimmunity to myelin antigens shows disease in S. Asian individuals to encompass recognition of novel epitopes; immunity to MBP116-130 in S. Asian individuals was highly disease-specific. CONCLUSIONS: These findings emphasize the need to define disease profiles across ethnicities and identify environmental triggers conferring acquired risk. Such findings must inform choices for immunotherapeutic interventions suitable for all, across ethnicities

    Linking In Vitro and In Vivo Survival of Clinical Leishmania donovani Strains

    Get PDF
    BACKGROUND: Leishmania donovani is an intracellular protozoan parasite that causes a lethal systemic disease, visceral leishmaniasis (VL), and is transmitted between mammalian hosts by phlebotomine sandflies. Leishmania expertly survives in these 'hostile' environments with a unique redox system protecting against oxidative damage, and host manipulation skills suppressing oxidative outbursts of the mammalian host. Treating patients imposes an additional stress on the parasite and sodium stibogluconate (SSG) was used for over 70 years in the Indian subcontinent. METHODOLOGY/PRINCIPAL FINDINGS: We evaluated whether the survival capacity of clinical L. donovani isolates varies significantly at different stages of their life cycle by comparing proliferation, oxidative stress tolerance and infection capacity of 3 Nepalese L. donovani strains in several in vitro and in vivo models. In general, the two strains that were resistant to SSG, a stress encountered in patients, attained stationary phase at a higher parasite density, contained a higher amount of metacyclic parasites and had a greater capacity to cause in vivo infection in mice compared to the SSG-sensitive strain. CONCLUSIONS/SIGNIFICANCE: The 2 SSG-resistant strains had superior survival skills as promastigotes and as amastigotes compared to the SSG-sensitive strain. These results could indicate that Leishmania parasites adapting successfully to antimonial drug pressure acquire an overall increased fitness, which stands in contrast to what is found for other organisms, where drug resistance is usually linked to a fitness cost. Further validation experiments are under way to verify this hypothesi

    American Tegumentary Leishmaniasis: Is Antimonial Treatment Outcome Related to Parasite Drug Susceptibility?

    Get PDF
    BackgroundAntimonials are the first drug of choice for the treatment of American tegumentary leishmaniasis (ATL); however, their efficacy is not predictable, and this may be linked to parasite drug resistance. We aimed to characterize the in vitro antimony susceptibility of clinical isolates of Peruvian patients with ATL who were treated with sodium stibogluconate and to correlate this in vitro phenotype with different treatment outcomes MethodsThirty-seven clinical isolates were obtained from patients with known disease and treatment histories. These isolates were typed, and the susceptibility of intracellular amastigotes to pentavalent (SbV) and trivalent (SbIII) antimonials was determined ResultsWe observed 29 SbV-resistant isolates among 4 species of subgenus Viannia most of which exhibited primary resistance; isolates resistant only to SbIII; and 3 combinations of in vitro phenotypes: (1) parasites sensitive to both drugs, (2) parasites resistant to both drugs, and (3) parasites resistant to SbV only (the majority of isolates fell into this category). There was no correlation between in vitro susceptibility to both antimonials and the clinical outcome of therapy ConclusionAntimony insensitivity might occur in a stepwise fashion (first to SbV and then to SbIII). Our data question the definition of true parasite resistance to antimonials. Further studies of treatment efficacy should apply standardized protocols and definitions and should also consider host factor

    Comparative Gene Expression Analysis throughout the Life Cycle of Leishmania braziliensis: Diversity of Expression Profiles among Clinical Isolates

    Get PDF
    Leishmania is a group of parasites (Protozoa, Trypanosomatidae) responsible for a wide spectrum of clinical forms. Among the factors explaining this phenotypic polymorphism, parasite features are important contributors. One approach to identify them consists in characterizing the gene expression profiles throughout the life cycle. In a recent study, the transcriptome of 3 Leishmania species was compared and this revealed species-specific differences, albeit in a low number. A key issue, however, is to ensure that the observed differences are indeed species-specific and not specific of the strains selected for representing the species. In order to illustrate the relevance of this concern, we analyzed here the gene expression profiles of 5 clinical isolates of L. braziliensis at seven time points of the life cycle. Our results clearly illustrate the unique character of each isolate in terms of gene expression dynamics: one Leishmania strain is not necessarily representative of a given species

    Antimonial Resistance in Leishmania donovani Is Associated with Increased In Vivo Parasite Burden

    Get PDF
    Leishmania donovani is an intracellular protozoan parasite that causes visceral leishmaniasis (VL). Antimonials (SSG) have long been the first-line treatment against VL, but have now been replaced by miltefosine (MIL) in the Indian subcontinent due to the emergence of SSG-resistance. Our previous study hypothesised that SSG-resistant L. donovani might have increased in vivo survival skills which could affect the efficacy of other treatments such as MIL. The present study attempts to validate these hypotheses. Fourteen strains derived from Nepalese clinical isolates with documented SSG-susceptibility were infected in BALB/c mice to study their survival capacity in drug free conditions (non-treated mice) and in MIL-treated mice. SSG-resistant parasites caused a significant higher in vivo parasite load compared to SSG-sensitive parasites. However, this did not seem to affect the strains' response to MIL-treatment since parasites from both phenotypes responded equally well to in vivo MIL exposure. We conclude that there is a positive association between SSG-resistance and in vivo survival skills in our sample of L. donovani strains which could suggest a higher virulence of SSG-R strains compared to SSG-S strains. These greater in vivo survival skills of SSG-R parasites do not seem to directly affect their susceptibility to MIL. However, it cannot be excluded that repeated MIL exposure will elicit different adaptations in these SSG-R parasites with superior survival skills compared to the SSG-S parasites. Our results therefore highlight the need to closely monitor drug efficacy in the field, especially in the context of the Kala-azar elimination programme ongoing in the Indian subcontinent

    Molecular mechanisms of drug resistance in natural Leishmania populations vary with genetic background

    Get PDF
    The evolution of drug-resistance in pathogens is a major global health threat. Elucidating the molecular basis of pathogen drug-resistance has been the focus of many studies but rarely is it known whether a drug-resistance mechanism identified is universal for the studied pathogen; it has seldom been clarified whether drug-resistance mechanisms vary with the pathogen's genotype. Nevertheless this is of critical importance in gaining an understanding of the complexity of this global threat and in underpinning epidemiological surveillance of pathogen drug resistance in the field. This study aimed to assess the molecular and phenotypic heterogeneity that emerges in natural parasite populations under drug treatment pressure. We studied lines of the protozoan parasite Leishmania (L.) donovani with differential susceptibility to antimonial drugs; the lines being derived from clinical isolates belonging to two distinct genetic populations that circulate in the leishmaniasis endemic region of Nepal. Parasite pathways known to be affected by antimonial drugs were characterised on five experimental levels in the lines of the two populations. Characterisation of DNA sequence, gene expression, protein expression and thiol levels revealed a number of molecular features that mark antimonial-resistant parasites in only one of the two populations studied. A final series of in vitro stress phenotyping experiments confirmed this heterogeneity amongst drug-resistant parasites from the two populations. These data provide evidence that the molecular changes associated with antimonial-resistance in natural Leishmania populations depend on the genetic background of the Leishmania population, which has resulted in a divergent set of resistance markers in the Leishmania populations. This heterogeneity of parasite adaptations provides severe challenges for the control of drug resistance in the field and the design of molecular surveillance tools for widespread applicability

    Metabolomics to unveil and understand phenotypic diversity between pathogen populations

    Get PDF
    Visceral leishmaniasis is caused by a parasite called Leishmania donovani, which every year infects about half a million people and claims several thousand lives. Existing treatments are now becoming less effective due to the emergence of drug resistance. Improving our understanding of the mechanisms used by the parasite to adapt to drugs and achieve resistance is crucial for developing future treatment strategies. Unfortunately, the biological mechanism whereby Leishmania acquires drug resistance is poorly understood. Recent years have brought new technologies with the potential to increase greatly our understanding of drug resistance mechanisms. The latest mass spectrometry techniques allow the metabolome of parasites to be studied rapidly and in great detail. We have applied this approach to determine the metabolome of drug-sensitive and drug-resistant parasites isolated from patients with leishmaniasis. The data show that there are wholesale differences between the isolates and that the membrane composition has been drastically modified in drug-resistant parasites compared with drug-sensitive parasites. Our findings demonstrate that untargeted metabolomics has great potential to identify major metabolic differences between closely related parasite strains and thus should find many applications in distinguishing parasite phenotypes of clinical relevance

    Diagnosis of Bacterial Bloodstream Infections: A 16S Metagenomics Approach

    Get PDF
    YesBackground. Bacterial bloodstream infection (bBSI) is one of the leading causes of death in critically ill patients and accurate diagnosis is therefore crucial. We here report a 16S metagenomics approach for diagnosing and understanding bBSI. Methodology/Principal Findings. The proof-of-concept was delivered in 75 children (median age 15 months) with severe febrile illness in Burkina Faso. Standard blood culture and malaria testing were conducted at the time of hospital admission. 16S metagenomics testing was done retrospectively and in duplicate on the blood of all patients. Total DNA was extracted from the blood and the V3–V4 regions of the bacterial 16S rRNA genes were amplified by PCR and deep sequenced on an Illumina MiSeq sequencer. Paired reads were curated, taxonomically labeled, and filtered. Blood culture diagnosed bBSI in 12 patients, but this number increased to 22 patients when combining blood culture and 16S metagenomics results. In addition to superior sensitivity compared to standard blood culture, 16S metagenomics revealed important novel insights into the nature of bBSI. Patients with acute malaria or recovering from malaria had a 7-fold higher risk of presenting polymicrobial bloodstream infections compared to patients with no recent malaria diagnosis (p-value = 0.046). Malaria is known to affect epithelial gut function and may thus facilitate bacterial translocation from the intestinal lumen to the blood. Importantly, patients with such polymicrobial blood infections showed a 9-fold higher risk factor for not surviving their febrile illness (p-value = 0.030). Conclusions/Significance. Our data demonstrate that 16S metagenomics is a powerful approach for the diagnosis and understanding of bBSI. This proof-of-concept study also showed that appropriate control samples are crucial to detect background signals due to environmental contamination.This work was supported by the Flemish Ministry of Sciences (EWI, SOFI project IDIS).This paper has been subject to a correction. Please see Correction file above

    Melioidosis diagnostic workshop, 2013.

    Get PDF
    Melioidosis is a severe disease that can be difficult to diagnose because of its diverse clinical manifestations and a lack of adequate diagnostic capabilities for suspected cases. There is broad interest in improving detection and diagnosis of this disease not only in melioidosis-endemic regions but also outside these regions because melioidosis may be underreported and poses a potential bioterrorism challenge for public health authorities. Therefore, a workshop of academic, government, and private sector personnel from around the world was convened to discuss the current state of melioidosis diagnostics, diagnostic needs, and future directions
    • …
    corecore