71 research outputs found

    Fractal fragmentation of rocks within sturzstroms: insight derived from physical experiments within the ETH geotechnical drum centrifuge

    Get PDF
    An investigation of the behaviour and energy budget of sturzstroms has been carried out using physical, analytical and numerical modelling techniques. Sturzstroms are rock slides of very large volume and extreme run out, which display intensive fragmentation of blocks of rock due to inter-particle collisions within a collisional flow. Results from centrifugal model experiments provide strong arguments to allow the micro-mechanics and energy budget of sturzstroms to be described quantitatively by a fractal comminution model. A numerical experiment using a distinct element method (DEM) indicates rock mass and boundary conditions, which allow an alternating fragmenting and dilating dispersive regime to evolve and to sustain for long enough to replicate the spreading and run out of sturzstroms without needing to resort to peculiar mechanism. The fragmenting spreading model supported here is able to explain the run out of a fluid-absent granular flow beyond the travel distance predicted by a Coulomb frictional sliding model. This, and its strong relation to internal fragmentation, suggests that a sturzstrom constitutes a landslide category of its own. This study provides a novel framework for the understanding the physics of such sturzstrom

    A laboratory investigation on an undisturbed silty sand from a slope prone to landsliding

    Get PDF
    A laboratory investigation is presented for undisturbed samples of a silty sand under saturated conditions. The soil was sampled from test pits south of RĂĽdlingen in North-East Switzerland, where a landslide triggering experiment was carried out on a steep forest slope. The aim of the work was to characterise the behaviour of the soil in triaxial tests, in the light of the possible failure mechanisms of the slope. Conventional drained and undrained triaxial tests were conducted to detect critical state conditions as well as peak shear strength as a function of confining pressure. Soil specimens were also exposed to stress paths simulating in situ water pressure increase to study the stress-strain response and to enhance the ability to predict failure conditions more accurately in the future. Possible unstable response along the stress paths analysed was investigated by means of second order work and strain acceleration. The results show that temporary unstable conditions may be encountered for this soil at stress ratios below ultimate failure and even below critical state line, depending on void ratio, drainage conditions and time dependent compressibility. A modified state parameter is explored as a potentially useful tool to discriminate conditions leading to eventual collaps

    Sarah Springman, Switzerland

    Get PDF
    Rector ETH Zuric

    Hydro-mechanical analysis of a surficial landslide triggered by artificial rainfall: the Ruedlingen field experiment

    Get PDF
    This paper interprets the hydromechanical behaviour of a steep, forested, instrumented slope during an artificial rainfall event, which triggered a shallow slope failure 15 h after rainfall initiation. The soil's mechanical response has been simulated by coupled hydro-mechanical finite-element analyses, using a critical state constitutive model that has been extended to unsaturated conditions. Failure occurs within a colluvium shallow soil cover, characterised as a silty sand of low plasticity. The hydraulic and mechanical parameters are calibrated, based on an extended set of experimental results, ranging from water retention curve measurements to triaxial stress path tests under both saturated and unsaturated conditions. Rainfall is simulated as a water flux at the soil surface and suitable boundary conditions account for the hydromechanical interaction between the soil cover and the underlying bedrock. The results are compared with field data of the mechanistic and the hydraulic responses up to failure and are found to provide a very satisfactory prediction. The study identifies water exfiltration from bedrock fissures as the main triggering agent, resulting in increased pore pressures along the soil-bedrock interface, reduced available shear strength and cause extensive plastic straining, leading to the formation and propagation of a failure surface.Accepted Author ManuscriptGeo-engineerin

    Construction of Motorway on Double Porosity Clay Fill

    Get PDF
    The paper describes the mechanical behaviour of double porosity clay fills. A trial embankment had been constructed on a 20-30 year-old landfill and monitored for 3 years. The embankment was instrumented by hydrostatic levelling profiles, surveying reference points, pore pressure gauges, inclinometers and depth reference points. Centrifuge modelling of the embankment behaviour on the consolidated landfill was carried out in the geotechnical centrifuge at ETH Zürich in Switzerland. The models were instrumented similarly to the real embankment with pore pressure transducers and a newly developed tool called “system of straws” for measurement of deformation at different depths. Surface deformations were measured by laser scanning. The results of centrifuge modelling are compared with in-situ data. The degradation of the double porosity structure in the vertical profile of the landfill, and its influence on the permeability of the soil is discussed

    Numerical modelling of slope–vegetation–atmosphere interaction: an overview

    Get PDF
    The behaviour of natural and artificial slopes is controlled by their thermo-hydro-mechanical conditions and by soil–vegetation–atmosphere interaction. Porewater pressure changes within a slope related to variable meteorological settings have been shown to be able to induce soil erosion, shrinkage–swelling and cracking, thus leading to an overall decrease of the available soil strength with depth and, ultimately, to a progressive slope collapse. In terms of numerical modelling, the stability analysis of partially saturated slopes is a complex problem and a wide range of approaches from simple limit equilibrium solutions to advanced numerical analyses have been proposed in the literature. The more advanced approaches, although more rigorous, require input data such as the soil water retention curve and the hydraulic conductivity function, which are difficult to obtain in some cases. The quantification of the effects of future climate scenarios represents an additional challenge in forecasting slope–atmosphere interaction processes. This paper presents a review of real and ideal case histories regarding the numerical analysis of natural and artificial slopes subjected to different types of climatic perturbations. The limits and benefits of the different numerical approaches adopted are discussed and some general modelling recommendations are addressed
    • …
    corecore