426 research outputs found

    Fingerprinting dark energy

    Full text link
    Dark energy perturbations are normally either neglected or else included in a purely numerical way, obscuring their dependence on underlying parameters like the equation of state or the sound speed. However, while many different explanations for the dark energy can have the same equation of state, they usually differ in their perturbations so that these provide a fingerprint for distinguishing between different models with the same equation of state. In this paper we derive simple yet accurate approximations that are able to characterize a specific class of models (encompassing most scalar-field models) which is often generically called "dark energy". We then use the approximate solutions to look at the impact of the dark energy perturbations on the dark matter power spectrum and on the integrated Sachs-Wolfe effect in the cosmic microwave background radiation.Comment: 11 pages, 5 figures, minor changes to match published versio

    Parametrization for the Scale Dependent Growth in Modified Gravity

    Full text link
    We propose a scale dependent analytic approximation to the exact linear growth of density perturbations in Scalar-Tensor (ST) cosmologies. In particular, we show that on large subhorizon scales, in the Newtonian gauge, the usual scale independent subhorizon growth equation does not describe the growth of perturbations accurately, as a result of scale-dependent relativistic corrections to the Poisson equation. A comparison with exact linear numerical analysis indicates that our approximation is a significant improvement over the standard subhorizon scale independent result on large subhorizon scales. A comparison with the corresponding results in the Synchronous gauge demonstrates the validity and consistency of our analysis.Comment: 10 pages, 5 figures. Minor modifications and references added to match published versio

    A parametrization for the growth index of linear matter perturbations

    Full text link
    We propose a parametrization for the growth index of the linear matter perturbations, γ(z)=γ0+z1+zγ1\gamma(z)=\gamma_0+\frac{z}{1+z}\gamma_1. The growth factor of the perturbations parameterized as Ωmγ\Omega_m^{\gamma} is analyzed for both the wwCDM model and the DGP model with our proposed form for γ\gamma. We find that γ1\gamma_1 is negative for the wwCDM model but is positive for the DGP model. Thus it provides another signature to discriminate them. We demonstrate that Ωmγ\Omega_m^{\gamma} with γ\gamma taking our proposed form approximates the growth factor very well both at low and high redshfits for both kinds of models. In fact, the error is below 0.03% for the Λ\LambdaCDM model and 0.18% for the DGP model for all redshifts when Ωm0=0.27\Omega_{m0}=0.27. Therefore, our parametrization may be robustly used to constrain the growth index of different models with the observational data which include points for redshifts ranging from 0.15 to 3.8, thus providing discriminative signatures for different models.Comment: 14 pages, 6 figures; Added reference

    Measuring the dark side (with weak lensing)

    Full text link
    We introduce a convenient parametrization of dark energy models that is general enough to include several modified gravity models and generalized forms of dark energy. In particular we take into account the linear perturbation growth factor, the anisotropic stress and the modified Poisson equation. We discuss the sensitivity of large scale weak lensing surveys like the proposed DUNE satellite to these parameters. We find that a large-scale weak-lensing tomographic survey is able to easily distinguish the Dvali-Gabadadze-Porrati model from LCDM and to determine the perturbation growth index to an absolute error of 0.02-0.03.Comment: 19 pages, 11 figure

    Consistency of LCDM with Geometric and Dynamical Probes

    Full text link
    The LCDM cosmological model assumes the existence of a small cosmological constant in order to explain the observed accelerating cosmic expansion. Despite the dramatic improvement of the quality of cosmological data during the last decade it remains the simplest model that fits remarkably well (almost) all cosmological observations. In this talk I review the increasingly successful fits provided by LCDM on recent geometric probe data of the cosmic expansion. I also briefly discuss some emerging shortcomings of the model in attempting to fit specific classes of data (eg cosmic velocity dipole flows and cluster halo profiles). Finally, I summarize recent results on the theoretically predicted matter overdensity (δm=δρmρm\delta_m=\frac{\delta \rho_m}{\rho_m}) evolution (a dynamical probe of the cosmic expansion), emphasizing its scale and gauge dependence on large cosmological scales in the context of general relativity. A new scale dependent parametrization which describes accurately the growth rate of perturbations even on scales larger than 100h^{-1}Mpc is shown to be a straightforward generalization of the well known scale independent parametrization f(a)=\omms(a)^\gamma valid on smaller cosmological scales.Comment: 20 pages, 6 figures. Invited review at the 1st Mediterranean Conference on Classical and Quantum Gravity (MCCQG). To appear in the proceeding

    Cosmology with Interaction between Phantom Dark Energy and Dark Matter and the Coincidence Problem

    Full text link
    We study a cosmological model in which phantom dark energy is coupled to dark matter by phenomenologically introducing a coupled term to the equations of motion of dark energy and dark matter. This term is parameterized by a dimensionless coupling function δ\delta, Hubble parameter and the energy density of dark matter, and it describes an energy flow between the dark energy and dark matter. We discuss two cases: one is the case where the equation-of-state ωe\omega_e of the dark energy is a constant; the other is that the dimensionless coupling function δ\delta is a constant. We investigate the effect of the interaction on the evolution of the universe, the total lifetime of the universe, and the ratio of the period when the universe is in the coincidence state to its total lifetime. It turns out that the interaction will produce significant deviation from the case without the interaction.Comment: Latex, 17 pages including 14 figures, minor change

    Crossing the Phantom Divide: Theoretical Implications and Observational Status

    Get PDF
    If the dark energy equation of state parameter w(z) crosses the phantom divide line w=-1 (or equivalently if the expression d(H^2(z))/dz - 3\Omega_m H_0^2 (1+z)^2 changes sign) at recent redshifts, then there are two possible cosmological implications: Either the dark energy consists of multiple components with at least one non-canonical phantom component or general relativity needs to be extended to a more general theory on cosmological scales. The former possibility requires the existence of a phantom component which has been shown to suffer from serious theoretical problems and instabilities. Therefore, the later possibility is the simplest realistic theoretical framework in which such a crossing can be realized. After providing a pedagogical description of various dark energy observational probes, we use a set of such probes (including the Gold SnIa sample, the first year SNLS dataset, the 3-year WMAP CMB shift parameter, the SDSS baryon acoustic oscillations peak (BAO), the X-ray gas mass fraction in clusters and the linear growth rate of perturbations at z=0.15 as obtained from the 2dF galaxy redshift survey) to investigate the priors required for cosmological observations to favor crossing of the phantom divide. We find that a low \Omega_m prior (0.2<\Omega_m <0.25) leads, for most observational probes (except of the SNLS data), to an increased probability (mild trend) for phantom divide crossing. An interesting degeneracy of the ISW effect in the CMB perturbation spectrum is also pointed out.Comment: Accepted in JCAP (to appear). Comments added, typos corrected. 19 pages (revtex), 8 figures. The numerical analysis files (Mathematica + Fortran) with instructions are available at http://leandros.physics.uoi.gr/pdl-cross/pdl-cross.htm . The ppt file of a relevant talk may be downloaded from http://leandros.physics.uoi.gr/pdl-cross/pdl2006.pp

    Comparison of Standard Ruler and Standard Candle constraints on Dark Energy Models

    Full text link
    We compare the dark energy model constraints obtained by using recent standard ruler data (Baryon Acoustic Oscillations (BAO) at z=0.2 and z=0.35 and Cosmic Microwave Background (CMB) shift parameters R and l_a) with the corresponding constraints obtained by using recent Type Ia Supernovae (SnIa) standard candle data (ESSENCE+SNLS+HST from Davis et. al.). We find that, even though both classes of data are consistent with LCDM at the 2\sigma level, there is a systematic difference between the two classes of data. In particular, we find that for practically all values of the parameters (\Omega_0m,\Omega_b) in the 2\sigma range of the the 3-year WMAP data (WMAP3) best fit, LCDM is significantly more consistent with the SnIa data than with the CMB+BAO data. For example for (\Omega_0m,\Omega_b)=(0.24,0.042) corresponding to the best fit values of WMAP3, the dark energy equation of state parametrization w(z)=w_0 + w_1 (z/(1+z)) best fit is at a 0.5\sigma distance from LCDM (w_0=-1,w_1=0) using the SnIa data and 1.7\sigma away from LCDM using the CMB+BAO data. There is a similar trend in the earlier data (SNLS vs CMB+BAO at z=0.35). This trend is such that the standard ruler CMB+BAO data show a mild preference for crossing of the phantom divide line w=-1, while the recent SnIa data favor LCDM. Despite of this mild difference in trends, we find no statistically significant evidence for violation of the cosmic distance duality relation \eta \equiv d_L(z)/(d_A(z) (1+z)^2)=1. For example, using a prior of \Omega_0m=0.24, we find \eta=0.95 \pm 0.025 in the redshift range 0<z<2, which is consistent with distance duality at the 2\sigma level.Comment: References added. 9 pages, 7 figures. The Mathematica files with the numerical analysis of the paper can be found at http://leandros.physics.uoi.gr/rulcand/rulcand.ht

    Non-Celiac Gluten Sensitivity: The New Frontier of Gluten Related Disorders

    Get PDF
    Non Celiac Gluten sensitivity (NCGS) was originally described in the 1980s and recently a “re-discovered” disorder characterized by intestinal and extra-intestinal symptoms related to the ingestion of gluten-containing food, in subjects that are not affected with either celiac disease (CD) or wheat allergy (WA). Although NCGS frequency is still unclear, epidemiological data have been generated that can help establishing the magnitude of the problem. Clinical studies further defined the identity of NCGS and its implications in human disease. An overlap between the irritable bowel syndrome (IBS) and NCGS has been detected, requiring even more stringent diagnostic criteria. Several studies suggested a relationship between NCGS and neuropsychiatric disorders, particularly autism and schizophrenia. The first case reports of NCGS in children have been described. Lack of biomarkers is still a major limitation of clinical studies, making it difficult to differentiate NCGS from other gluten related disorders. Recent studies raised the possibility that, beside gluten, wheat amylase-trypsin inhibitors and low-fermentable, poorly-absorbed, short-chain carbohydrates can contribute to symptoms (at least those related to IBS) experienced by NCGS patients. In this paper we report the major advances and current trends on NCG

    Euclid:Validation of the MontePython forecasting tools

    Get PDF
    The Euclid mission of the European Space Agency will perform a survey of weak lensing cosmic shear and galaxy clustering in order to constrain cosmological models and fundamental physics. We expand and adjust the mock Euclid likelihoods of the MontePython software in order to match the exact recipes used in previous Euclid Fisher matrix forecasts for several probes: weak lensing cosmic shear, photometric galaxy clustering, the cross-correlation between the latter observables, and spectroscopic galaxy clustering. We also establish which precision settings are required when running the Einstein-Boltzmann solvers CLASS and CAMB in the context of Euclid. For the minimal cosmological model, extended to include dynamical dark energy, we perform Fisher matrix forecasts based directly on a numerical evaluation of second derivatives of the likelihood with respect to model parameters. We compare our results with those of other forecasting methods and tools. We show that such MontePython forecasts agree very well with previous Fisher forecasts published by the Euclid Collaboration, and also, with new forecasts produced by the CosmicFish code, now interfaced directly with the two Einstein-Boltzmann solvers CAMB and CLASS. Moreover, to establish the validity of the Gaussian approximation, we show that the Fisher matrix marginal error contours coincide with the credible regions obtained when running Monte Carlo Markov Chains with MontePython while using the exact same mock likelihoods. The new Euclid forecast pipelines presented here are ready for use with additional cosmological parameters, in order to explore extended cosmological models
    corecore