23 research outputs found

    La trajectòria humana de Jaume Vidal Alcover

    Get PDF
    Abstract not availabl

    El problema del deute públic i l'enfortiment del poder reial

    Get PDF

    Si no fos

    Get PDF

    Cooperative Force Generation of KIF1A Brownian Motors

    Get PDF
    KIF1A is a kinesin motor protein that can work processively in a monomeric (single-headed) form by using a noise-driven ratchet mechanism. Here, we show that the combination of a passive diffusive state and finite-time kinetics of adenosine triphosphate hydrolysis provides a powerful mechanism of cooperative force generation, implying for instance that ~10 monomeric KIF1As can team up to become ~100 times stronger than a single one. Consequently, we propose that KIF1A could outperform conventional (double-headed) kinesin collectively and thus explain its specificity in axonal trafficking. We elucidate the cooperativity mechanism with a lattice model that includes multiparticle transitions.Peer ReviewedPostprint (published version

    Cooperative action of KIF1A Brownian motors with finite dwell time

    Get PDF
    We study in detail the cooperative action of small groups of KIF1A motors in its monomeric (single-headed) form within an arrangement relevant to vesicle traffic or membrane tube extraction. It has been recently shown that under these circumstances, the presence of a finite dwell time in the motor cycle contributes to remarkably enhance collective force generation [D. Oriola and J. Casademunt, Phys. Rev. Lett. 111, 048103 (2013)]. We analyze this mechanism in detail by means of a two-state noise-driven ratchet model with hard-core repulsive interactions. We obtain staircase-shaped velocity-force curves and show that motors self-organize in clusters with a nontrivial force distribution that conveys a large part of the load to the central motors. Under heavy loads, large clusters adopt a synchronic mode of totally asymmetric steps. We also find a dramatic increase of the collective efficiency with the number of motors. Finally, we complete the study by addressing different interactions that impose spatial constraints such as rigid coupling and raft-induced confinement. Our results reinforce the hypothesis that the specificity of KIF1A to axonal vesicular transport may be deeply related to its high cooperativity.Peer ReviewedPostprint (published version

    Cooperative force generation of KIF1A Brownian motors

    Get PDF
    KIF1A is a kinesin motor protein that can work processively in a monomeric (single-headed) form by using a noise-driven ratchet mechanism. Here, we show that the combination of a passive diffusive state and finite-time kinetics of adenosine triphosphate hydrolysis provides a powerful mechanism of cooperative force generation, implying for instance that ∼ 10 monomeric KIF1As can team up to become ∼ 100 times stronger than a single one. Consequently, we propose that KIF1A could outperform conventional (double-headed) kinesin collectively and thus explain its specificity in axonal trafficking. We elucidate the cooperativity mechanism with a lattice model that includes multiparticle transitions

    Nonlinear amplitude dynamics in flagellar beating

    Get PDF
    The physical basis of flagellar and ciliary beating is a major problem in biology which is still far from completely understood. The fundamental cytoskeleton structure of cilia and flagella is the axoneme, a cylindrical array of microtubule doublets connected by passive cross-linkers and dynein motor proteins. The complex interplay of these elements leads to the generation of self-organized bending waves. Although many mathematical models have been proposed to understand this process, few attempts have been made to assess the role of dyneins on the nonlinear nature of the axoneme. Here, we investigate the nonlinear dynamics of flagella by considering an axonemal sliding control mechanism for dynein activity. This approach unveils the nonlinear selection of the oscillation amplitudes, which are typically either missed or prescribed in mathematical models. The explicit set of nonlinear equations are derived and solved numerically. Our analysis reveals the spatio-temporal dynamics of dynein populations and flagellum shape for different regimes of motor activity, medium viscosity and flagellum elasticity. Unstable modes saturate via the coupling of dynein kinetics and flagellum shape without the need of invoking a nonlinear axonemal response. Hence, our work reveals a novel mechanism for the saturation of unstable modes in axonemal beating

    Fluidization and active thinning by molecular kinetics in active gels

    Get PDF
    We derive the constitutive equations of an active polar gel from a model for the dynamics of elastic molecules that link polar elements. Molecular binding kinetics induces the fluidization of the material, giving rise to Maxwell viscoelasticity and, provided that detailed balance is broken, to the generation of active stresses. We give explicit expressions for the transport coefficients of active gels in terms of molecular properties, including nonlinear contributions on the departure from equilibrium. In particular, when activity favors linker unbinding, we predict a decrease of viscosity with activity active thinning of kinetic origin, which could explain some experimental results on the cell cortex. By bridging the molecular and hydrodynamic scales, our results could help understand the interplay between molecular perturbations and the mechanics of cells and tissues

    Formation of helical membrane tubes around microtubules by single-headed kinesin KIF1A

    Get PDF
    The kinesin-3 motor KIF1A is in charge of vesicular transport in neuronal axons. Its single-headed form is known to be very inefficient due to the presence of a diffusive state in the mechanochemical cycle. However, recent theoretical studies have suggested that these motors could largely enhance force generation by working in teams. Here we test this prediction by challenging single-headed KIF1A to extract membrane tubes from giant vesicles along microtubule filaments in a minimal in vitro system. Remarkably, not only KIF1A motors are able to extract tubes but they feature a novel phenomenon: tubes are wound around microtubules forming tubular helices. This finding reveals an unforeseen combination of cooperative force generation and self-organized manoeuvreing capability, suggesting that the diffusive state may be a key ingredient for collective motor performance under demanding traffic conditions. Hence, we conclude that KIF1A is a genuinely cooperative motor, possibly explaining its specificity to axonal trafficking.Peer ReviewedPostprint (published version
    corecore