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Cooperative action of KIF1A Brownian motors with finite dwell time
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We study in detail the cooperative action of small groups of KIF1A motors in its monomeric (single-headed)
form within an arrangement relevant to vesicle traffic or membrane tube extraction. It has been recently shown
that under these circumstances, the presence of a finite dwell time in the motor cycle contributes to remarkably
enhance collective force generation [D. Oriola and J. Casademunt, Phys. Rev. Lett. 111, 048103 (2013)]. We
analyze this mechanism in detail by means of a two-state noise-driven ratchet model with hard-core repulsive
interactions. We obtain staircase-shaped velocity-force curves and show that motors self-organize in clusters
with a nontrivial force distribution that conveys a large part of the load to the central motors. Under heavy
loads, large clusters adopt a synchronic mode of totally asymmetric steps. We also find a dramatic increase
of the collective efficiency with the number of motors. Finally, we complete the study by addressing different
interactions that impose spatial constraints such as rigid coupling and raft-induced confinement. Our results
reinforce the hypothesis that the specificity of KIF1A to axonal vesicular transport may be deeply related to its
high cooperativity.
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I. INTRODUCTION

Intracellular traffic in cells is mainly enabled by kinesins
and dyneins, which transport a large variety of cargoes along
microtubule (MT) filaments [1–4]. Some of the most demand-
ing conditions for such tasks are found in neurons [5–7]. Pro-
teins required in synaptic terminals are synthesized in the soma
of the cell and must be transported through axons. In addition
to the long distances that vesicles need to travel (ranging from
millimeters up to even meters), the densely crowded axoplasm
and the possibility of traffic jams may put at risk the delivery
of cargoes at their destination, with severe consequences for
neuronal function. For instance, impaired axonal transport
due to the formation of traffic jams has been associated with
neurodegenerative diseases [8,9]. Long-range processivity of
vesicles, that is, the capacity to travel long distances without
detachment from the microtubules, is ensured by combining
large numbers of motors available on the vesicle. However, the
capacity to exert forces on a vesicle by a collection of motors is
limited by the liquidlike nature of the vesicle membrane. This
implies, for instance, that the accumulation of large numbers of
conventional kinesin motors would not furnish the capability to
eventually overcome obstacles or traffic jams that impede the
advance of a vesicle [10–12]. Understanding the mechanisms
of motor self-organization designed to secure robust transport,
in particular with respect to the generation of large forces, is
thus of primary importance.

Recently, there has been increasing interest in a member
of the kinesin-3 family, the kinesin KIF1A [5,13–17], which
is specific for the transport of synaptic vesicle precursors in
axons. This motor has been reported to work processively
in vitro in a monomeric (single-headed) form by means of
a two-state noise-driven ratchet mechanism, being a natural
prototype of a Brownian motor [13,15,18–20]. The motor com-
bines a strongly bound state to the MT with a weakly bound
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state in which the K loop of the motor domain interacts with
the MT and prevents full detachment from the filament [14]. In
this state, the motor is able to diffuse freely along the filament.
Single-molecule experiments using monomeric KIF1A have
reported velocities of 0.2 μm/s and stall forces around
�0.1 pN [15], which reflect the inefficiency of the noise-
driven ratchet mechanism for a single motor compared to the
hand-over-hand mechanism typical of conventional dimeric
(double-headed) kinesin (kinesin-1 family, also referred to
as KIF5), with stall forces around 60 times larger. KIF1A
has been found to operate in vivo in its dimeric form [21];
however, the motor preserves a weakly bound diffusive state
similar to that of its monomeric form, which is expected
to weaken the motor and reduce its efficiency, similarly to
its single-headed counterpart and clearly at odds with the
particularly demanding conditions of axonal transport. We
previously showed that the presence of a weakly bound state is
suitable for the cooperative action of Brownian motors under
unequal loading in configurations relevant to the transport
of soft cargoes [22,23]. In such conditions, it was proposed
that KIF1A could achieve collective forces proportional to the
number of motors at finite velocity. Recently, we reported that
the existence of a finite dwell time in the motor cycle could
strongly enhance the collective force generation of groups
of motors, thus further increasing their cooperativity [24].
The present paper extends the results presented in Ref. [24]
by studying in detail different observables for KIF1A motor
clusters such as velocity-force (VF) relationships, cluster force
distributions, and efficiencies; considering different types of
interactions between motors that are relevant to different
situations both in vitro and in vivo.

II. MODEL FOR KIF1A DYNAMICS

We consider the general problem of N KIF1A motors
moving along a one-dimensional track with periodicity l. The
dynamics of the system are defined by a set of N Langevin
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FIG. 1. (Color online) Description of the model. (a) Two-state
ratchet model for monomeric KIF1A. Motors switch stochastically
between the states k = 1,2 with potentials U1 and U2, respectively.
Excitations are localized in regions of size δ around the minima of
U1, whereas decays are delocalized. The average excitation and decay
rates read ω� and ω, respectively. Gray zones depict where transitions
are allowed. (b) Main motor-motor interactions: hard-core repulsion
(left), rigid coupling (center), and raft-induced interactions (right)
(see Secs. III and IV). Small circles indicate the motor position and
the red drawings indicate the type of interaction.

equations for the set of positions x(t) = {x1(t), . . . ,xN (t)}:
λẋi = −U ′(xi,ki) −

∑
k �=i

W ′(xi − xk) − Fδ1i + ζi(t), (1)

where i = 1, . . . ,N , λ is the friction coefficient, and ζi(t)
is a Gaussian white noise for the ith motor that follows
the relation 〈ζi(t)ζj (t ′)〉 = 2kBT λδij δ(t − t ′). The set k(t) =
{k1(t), . . . ,kN (t)} defines the configuration of the system at
time t , where ki(t) = {1,2} is a discrete stochastic variable
that describes the state of the ith motor. The two possible
states correspond to two different conformations of the motor
domain, with their respective potential landscapes U (xi,ki).
When KIF1A captures an adenosine triphosphate (ATP)
molecule, the motor switches to a weakly bound state (ki = 2).
In this state, KIF1A diffuses along the filament with diffusion
coefficient D subject to a constant potential U2 ≡ U (xi,2).
In contrast, in the absence of ATP, the motor is strongly
bound to the filament (ki = 1) and subject to a periodic ratchet
potential U1 ≡ U (xi,1) similar to the one depicted in Fig. 1(a).
Each motor switches its state independently and follows its
particular kinetics. Since KIF1A carries soft cargoes, motors
are not fixed in the cargo reference frame and they interact
via a given potential W (ξ ). Finally, F is the tangential
load originated by the cargo. This force is applied only to
the foremost motor that conveys the load to the rest. This
nonequal loading has already been shown as the main reason
for the appearance of cooperativity in the system [22,23].
Next we need to describe the state dynamics. We define
the average excitation rate ω�, which depends essentially
on the time required to capture an ATP molecule. We assume
that the molecule is allowed to get excited only in a small
neighborhood of size δ around the potential minima, that is,
δ � l. This condition follows from the fact that the motor
is not likely to capture an ATP molecule during the power

stroke (i.e., sliding down the sawtooth potential). On the other
hand, we assume that thermal decays are delocalized, with
an average decay rate ω [Fig. 1(a)]. Motors get excited and
decay stochastically, with exponential distributed times having
average values 1/ω� and 1/ω, respectively.

The presence of an external load F applied to the foremost
motor drives the spontaneous formation of a fluctuating cluster.
When the steady state is reached, the velocity of an N -motor
cluster coincides with that of the first motor VN (F ) = 〈ẋ1〉.
On the other hand, the collective stall force is usually defined
as the necessary force to stall the cluster. However, it is quite
common that for large numbers of motors the collective VF
curves fall to very small values at forces significantly smaller
than the stall force, implying the existence of an apparent
stall force that scales differently with N respect to the actual
stall force [10,24]. In such cases it is useful and convenient
to define an apparent stall force Fs by a condition of the type
VN (Fs) = Vc, where Vc is a small cutoff velocity. Hereinafter
we will use the term stall force and the notation Fs(N ) to
denote the apparent stall force of an N -motor cluster, unless
otherwise indicated. Finally, the collective efficiency ηN (F ) in
the biological context is usually defined as [25]

ηN (F ) = FVN (F )

rN (F )	μ
, (2)

where rN (F ) is the collective chemical reaction rate dependent
on the applied force. In our case the calculation of this rate
equals the number of excitations per unit time for all the motors
and 	μ corresponds to the chemical potential difference for
ATP hydrolysis. Since we will work in far-from-equilibrium
conditions (i.e., 	μ 	 kBT ) we neglect thermal activations.

Next we discuss the proper parameters to model a single-
headed KIF1A motor in vitro. Table I shows the main selected
parameters in our study.

The most salient feature of single-headed KIF1A is
that the ability to advance along the MT relies on ther-
mal diffusion in the weakly bound state. In vitro experi-
ments have reported diffusion coefficients in the range of
20–40 nm2/ms, which involve motor excursions much larger
than the ratchet periodicity of 8 nm [13,15]. We will consider
20 nm2/ms as a reasonable value. The characteristic rates ω

and ω� are found in the literature within the range of hundreds
of Hz. Whereas ω is a parameter coming from the affinity
between the motor domain and the MT, ω� depends on ATP
concentration in the solvent. Experimental data suggest that
ω� � 250 s−1 and ω � 250 s−1 [13,15,16]. The asymmetry a

TABLE I. Realistic values of the main parameters for the
modeling of monomeric KIF1A motors in vitro. The values are
extracted mainly from [13,15,16].

Parameter Value

MT periodicity l = 8 nm
ratchet asymmetry a = 1.6 nm
diffusion coefficient D = 20 nm2/ms
excitation rate ω� � 250 s−1

decay rate ω = 250 s−1

ratchet potential maximum U = 20kBT
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of the ratchet is an adjustable parameter for the model that is
difficult to grasp from experiments. The asymmetry reduces
the overall velocity of the system and can lead to nontrivial
effects especially in the limit of weak noise [23]. For our
purposes, we adjust this parameter to 20% of the periodicity
length. Finally, the motor size σ is carefully chosen to avoid
possible commensurability effects [22,23]. In Sec. IV C we
will study in detail the implications of this parameter in the
study of the collective stall force of the system.

III. HARD-CORE REPULSIVE INTERACTIONS

To study the dynamics of N interacting motors, we first
consider hard-core repulsion between them. For practical
reasons we use a truncated Lennard-Jones potential

WHC(ξ ) = 4ε

[(
σ

ξ

)12

−
(

σ

ξ

)6]
(3)

for ξ < 21/6σ and zero otherwise, where ε is taken large
enough to ensure that the interaction is effectively hard core
for ξ < σ .

A. Dwell time effect for N = 2

Excitations of motors are localized in regions of size δ � l

centered in the minima of the ratchet potential. Once a motor
enters this region, it waits a certain amount of time given
by an exponential dwell time distribution with average dwell
time 1/ω�. We define β ≡ ω/ω� so that the previous studies
in Refs. [22,23] with negligible dwell time correspond to the
case β = 0. In a first approximation, we will consider that
once the motor enters the region δ it stays in the minimum
of the ratchet without fluctuating and hence it cannot escape
from the region by thermal fluctuations. This condition will
loosen and be further discussed in Sec. III B. In Fig. 2(a)
of Ref. [24], the effect of the dwell time on the stall force is
shown. The KIF1A velocity at zero load is V1 = 0.15 μm/s for
β = 2.5 and the stall force is �0.1 pN. These results are very
similar to those found experimentally [15]. On the addition
of a second motor, we find a remarkable enhancement of the
VF curve with a consequent increase on the stall force of the

FIG. 2. Schematic description of the two cooperative mecha-
nisms for the case of hard-core repulsion. (a) “Down-push” mech-
anism: Initially, the motor in the back decays and slides down the
potential pushing the foremost motor to the next site. (b) “Up-push”
mechanism: The leading motor is waiting for an ATP molecule while
the second one is blocked in the ratchet slope. Once the leading motor
is excited, the second motor pushes the foremost like in mechanism
(a). The segment indicates that motors are found in contact.

cluster. If the dwell time is set to zero (β = 0) [Fig. 2(a), inset,
of Ref. [24]] the naive extensive scaling Fs(N ) = NFs(1) is
approximately correct, consistently with the validity of the
mean-field description discussed in Ref. [23] for sufficiently
large diffusion. However, for β �= 0, we find that Fs(2) may
be up to three times larger than Fs(1) [Fig. 2(b) of Ref. [24]].
The stall force of the cluster grows with β until saturation,
while the velocity at zero load rapidly decreases. The reason
for the enhancement of the stall force can be explained in
simple terms by considering two interacting motors.

Let us consider the configuration in Fig. 2(a), which was
first discussed in [22]. Initially, the motor in the back decays
and slides over the potential pushing the foremost motor to
the next period of the MT. This mechanism is sensitive to
the external force since both motors can drift backward when
they are found in the initial configuration and holds only for
F � 2Fs(1). Therefore, it cannot be responsible for the stall
force enhancement. Moreover, the strength of this mechanism
is proportional to the ATP concentration in the solvent since
the initial state requires the two motors to be found in state
k = 2. Consequently, when β increases the mechanism loses
strength, in contradiction to the curve in Fig. 2(b) of Ref. [24].
We call this mechanism a “down-push”.

Now let us focus on the mechanism initiated from the
configuration in Fig. 2(b). We notice that this configuration
is only possible if β �= 0 since the two motors are found
together in state k = 1. The leading one is waiting for ATP,
while the second one is blocked on the ratchet slope. Once
the leading motor is excited, the second motor pushes the
foremost in the same way as before. We call this mechanism
an “up-push”. However, in this case the initial configuration
remains unaffected for small forces F ∼ kBT l/ l2

D , where
lD ≡ √

2D/ω and the “up-push” mechanism is able to work for
F > 2Fs(1). Furthermore, this mechanism is ATP dependent
and its strength saturates for very low concentrations, as shown
in Fig. 2(b) of Ref. [24]. The same results can be studied more
precisely using a lattice model [24].

B. Dwell time effect for arbitrary N

Next we study the VF relationship for an arbitrary number
of motors. In Fig. 3(a) we find a dramatic enhancement of
the force at finite non-negligible velocities as we increase N .
Although the velocity at zero load is the same for different N ,
the stall force is largely increased. We also note a remarkable
complex shape of the curves, which resemble a staircase. This
effect is a consequence of the inhomogeneous motor density
distribution in the cluster and the particular high noise intensity
in the system. For relatively low forces, the external force is
conveyed only to a reduced fraction of active motors in the
center of the cluster (see Sec. III D), while those in the rear
behave much more diffusively and remain loosely bound to the
active group [Fig. 3(b)]. The successive plateaus correspond
to the recruitment of new motors by the active group. Indeed,
as the force is increased, the new motor interacts more often
with the active group and thus becomes progressively more
cooperative. This partially compensates for the decrease of
velocity for a certain range of forces. This phenomenon
becomes ineffective whenever the force reaches a multiple
of ∼U/l, which is the typical ratchet force. At this point,
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FIG. 3. (Color online) (a) Plot of VF curves for different N , with
β = 2.5, σ/l = 0.521, and δ/ l = 0.02. The collective stall force
grows rapidly with N in a nonlinear fashion. Moreover, the high
diffusive environment induces a staircase shape of the VF curves.
Data correspond to the case where motors cannot fluctuate in ratchet
minima. (b) Typical motor trajectories for cases 1 (F = 8 pN) and 2
(F = 20 pN) in (a). Red squares show the active motors in the front,
which are generally three in case 1 and four in case 2.

both cooperative mechanisms in Fig. 2 fail and motors can be
dragged back over the ratchet slope. Therefore, each plateau in
Fig. 3(a) can be identified as the recruitment of a new motor by
the active part of the cluster. For instance, for N = 5 the first
plateau corresponds to typically three active motors and the
second plateau to four active motors, as shown in Fig. 3(b).
This mechanism also persists for backward movement until
the recruitment of the totality of motors (see Sec. III C, Fig. 5,
inset).

In Fig. 4 we study in detail the scaling of Fs with N for
different possible values of β (circles) and also in the case
of allowing fluctuations of the motors in the ratchet minima
(dashed curve). We notice a steep enhancement for low N and
saturation of the stall force for large N . The presence of noise
in the minima changes effectively the average excitation rate
to an effective average rate ω′�. Once a motor drifts out of
the region δ by thermal fluctuations, it soon falls back in the
minimum again, thus waiting again for ATP. Consequently, the
addition of noise in the ratchet minima corresponds to a smaller
effective excitation rate ω′� < ω� (or equivalently β ′ > β).

In Fig. 4 (inset) we observe the saturation of the VF curves
and the occurrence of long tails for large N , which makes it
convenient to define the apparent stall force as discussed above.
We also notice that for small forces (F < 10 pN), the velocity
for N = 10,15,20 is slightly greater than V1(0). This effect is
a numerical artifact due to the existence of very long transients
for large clusters under the action of small forces that bias the
statistics to larger velocities. A simple argument shows that this
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FIG. 4. (Color online) Plot of Fs vs N for β = 1,2.5 (circles)
and for noise in the minima (β = 2.5 and δ/ l = 0.02, dashed
line). We differentiate a steep enhancement for small clusters and
a saturation regime for large clusters assuming a cutoff velocity
Vc � 10−4 μm/s. The inset shows VF curves for N = 2–8 (gray)
and N = 10,15,20 (black) for β = 2.5. We notice the long tails near
stall force conditions.

effect cannot be present for purely repulsive potentials. In fact,
let us consider a cluster of N motors under an external force
F that moves at VN (F ) > V1(0). The last motor will only be
slowed down by the motors in the front since the interaction is
repulsive, thus the last motor will have a velocity smaller than
V1(0) and it will fall behind the cluster. By repeating the same
reasoning, the cluster will lose all motors except the leading
one, which will move at V1(0), hence V1(0) � VN (F ) ∀N,F >

0 for the case of a repulsive interaction.

C. Convergence to mean field and the role of diffusion in the
staircase shape of VF curves

We have shown that the cooperative action of motor clusters
outperforms the simple addition of individual forces, i.e., the
extensive scaling VN (F ) = V1(F/N) or FN (V ) = NF1(V ).
This scaling is the one predicted by a mean-field ansatz, which
assumes that correlations between positional and internal
degrees of freedom of the motors are neglected. In Ref. [23]
it was established that the extensive scaling was obtained
in the limits of large noise intensity or long-range repulsive
interaction between motors. For the case of hard-core repulsion
and typical noise intensity values for KIF1A, the latter
arguments implied that the mean-field ansatz was essentially
correct in the case β = 0. We have thus shown that β �= 0 is
responsible for a stronger violation of the mean-field ansatz in
the constructive direction, that is, for further enhancement of
cooperativity. Here we explicitly show how the introduction of
a soft long-range repulsion interaction restores the mean-field
scaling. To this aim we add to the hard-core part WHC an
exponential repulsive tail of the form

WL(ξ ) = κ�e−ξ/�, (4)

where κ measures the strength of the interaction and � denotes
its range. In Fig. 5 we study the loss of cooperativity for
the N = 5 curve of Fig. 3 as � is increased. We notice that
the stall force decreases for increasing � and the cooperative
mechanism induced by the finite dwell time disappears for suf-
ficiently large �, converging to the case β = 0. Interestingly,
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FIG. 5. (Color online) Convergence to mean field in the presence
of long-range repulsion with strength κl/kBT = 5 and different �.
The curve studied corresponds to the case N = 5 in Fig. 3. Symbols
are calculated for β = 2.5 and the dashed line corresponds to the
case β = 0. The inset shows VF curves including negative velocities.
The staircase behavior persists during backward motion until the
recruiting of the totality of motors.

the staircase behavior persists for negative velocities and it is
not very sensitive to the long-range interaction for �/l < 0.5
(Fig. 5, inset). Now we study the effect of noise strength on
the VF curves. Figure 6 shows the same N = 5 curve for four
different noise intensities. We notice that oscillations smooth
out for low noise intensity. As diffusion is lowered, the external
force is able to cluster motors more easily and the recruitment
effect is not so pronounced. Hence, sufficiently high diffusivity
is required, together with β �= 0, to produce staircase-shaped
VF curves.

D. Active and passive forces: Cluster force distribution

Each motor in the cluster experiences active and passive
forces. Active forces are those forces driven by ATP hydrolysis
that allow motors to perform their power stroke. In our context,
the power stroke corresponds to the sliding over the ratchet
potential when motors decay. Therefore, the average active
force for the ith motor reads F act

i = −〈U ′(xi,ki)〉. On the
other hand, passive forces correspond to the forces motors
experience due to the transmission of the external force F
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FIG. 6. (Color online) Plot of VF curves for different noise
intensities. The curve studied corresponds to the case N = 5 in Fig. 3.
As diffusion strength is lowered, the staircase behavior smoothes out.
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FIG. 7. (Color online) Passive force distribution F
pas
i for N =

12, β = 1, and different forces (symbols) and for β = 0, F = 10 pN
(dashed line). The force distribution in the cluster shows a pronounced
dip, which reflects an enhanced activity of the central part of the
cluster in the presence of dwell time.

via the potential W , therefore the average passive force the ith
motor experiences reads F

pas
i = −〈∑k �=i W (xi − xk)〉 − Fδ1i .

Hence, computing the time average in (1) we have

λ〈ẋi〉 = F act
i + F

pas
i . (5)

Since the average velocity of each motor in the cluster is
the same, this last equation tells us that the sum of active
and passive forces for each motor is constant on average.
In Fig. 7 we measure passive forces F

pas
i inside a N = 12

cluster for different external forces. By virtue of Eq. (5), the
complementary active forces can be obtained by subtraction
of the passive ones from the constant term. For β = 0 the
force distribution among motors is fairly homogeneous for
our choice of noise intensity and force. However, when β �= 0,
the force is much more unevenly distributed. Interestingly, the
first motor is not active, but is passively pushed by a central
group of motors that mostly originate the active forces. This
central group of active motors grows as F is increased. The last
motors rarely interact with the main cluster and thus they have a
minor contribution. The emergence of a nontrivial structure in
the internal distribution of forces is a signature of cooperativity
in this system and was already noted in Ref. [23] for β = 0.
However, in this case the effect is still present for large noise
intensities due to the addition of dwell time.

E. Coordinated motion of large clusters

In the case of large clusters under heavy loads, the cluster
adopts a characteristic stepwise coordinated mode, already
reported in Ref. [23] for β = 0. In this configuration, the
cluster waits for some collective dwell time before performing
a step as a whole, with an almost synchronous stepping
of all motors, superposed to the small fluctuations of the
individual motors. Steps are totally asymmetric, i.e., no
backward stepping occurs. The synchronous displacement is
clearer for the leading motors than for the ones in the rear.
Figure 8 shows the logarithm of the step size distribution
P (	x) measured at each 	t ∼ 1 ms for the leading motor
of a N = 40 cluster with an external force F = 30 pN. The
large central peak reflects the small fluctuations of the motor.
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FIG. 8. (Color online) Natural logarithm of the step size distri-
bution P (	x) measured at each time step for the leading motor of
an N = 40 cluster with a load of F = 30 pN. The inset shows the
natural logarithm of the collective dwell time distribution P (τc). The
green line shows a good fit to an exponential distribution. Measures
are taken at each time elapsed between steps 	x � 2 nm, which from
P (	x) are assumed to contribute to a net movement of the cluster.

The small peak around 4 nm corresponds to the synchronous
displacement, which for our choice of σ is roughly half the
period of the ratchet. We may identify a collective step as a
displacement 	x � 2 nm of the first motor so that we can
obtain the time distribution P (τc) for the collective dwell time
τc. This is shown in Fig. 8 (inset). The distribution appears to
be very close to exponential and has a mean collective dwell
time 〈τc〉 � 60 ms, implying a rather small velocity of � 70
nm/s. This mode of transport could be relevant to overcome
very large forces in the presence of obstacles or traffic jams,
by the recruitment of a sufficient number of motors.

F. Efficiency and randomness

To further characterize the collective properties of motor
clusters, we briefly discuss their collective efficiency and
randomness. In Fig. 9 we show the collective efficiency defined
in Eq. (2) normalized to the maximum value for a single
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FIG. 9. (Color online) Collective efficiency normalized to the
maximum value for N = 1. The addition of motors in the cluster
greatly enhances the efficiency of the system. The inset shows
efficiencies for N = 2 and 3. The different parameter values and
symbols are the same as in Fig. 3.

motor. A remarkable increase of the efficiency was already
reported for the case β = 0 in Refs. [22,23], where clusters of
ten motors increased the single-motor efficiency by a factor
10. In the presence of dwell time we find that the maximum
efficiency for similar clusters may increase up to a factor 100
that of a single motor. As shown in Fig. 9, the efficiency in
our case also exhibits complex behavior, as a consequence of
the staircase-shaped VF curves. If we take 	μ � 20kBT as
a reasonable value [25], the maximum efficiency of a single
motor is ηmax

1 ∼ 10−4. The low value is clearly associated
with the diffusive part of the motor cycle, which introduces
an important number of backward events. In this sense, the
presence of other motors contributes to further rectify possible
diffusive backward excursions. Notice that the efficiency of
a noise-driven motor such as KIF1A is necessarily very
small compared to the case of dimeric KIF5, exploiting the
hand-over-hand mechanism. Accordingly, the low efficiency
of the motor is also associated with a high randomness. This
parameter is defined as the ratio of the diffusive versus ballistic
displacements of the motor, at the scale of the track periodicity
l [26]. We find that the collective randomness decreases very
fast with the addition of motors. For the stepwise coordinated
mode discussed above, the randomness parameter remains
close to 1, that is, the case of a totally biased random walker
performing unit steps with an exponentially distributed time.

IV. CONFINING INTERACTIONS

A. Rigidly coupled motors

Pure hard-core repulsion between motors appears to be a
good description to account for excluded volume interactions
in the transport of soft cargoes, where motors move freely and
motors are unequally loaded. However, the case of rigidly
coupled motors separated by a fixed distance is also of
important interest in the transport of rigid cargoes and to other
situations relevant for biotechnological applications, which
can be designed using rigid assemblies of motors [27]. Fol-
lowing Ref. [23] to describe rigid interaction between motors
we will use a harmonic potential WS(ξ ) = 1

2k(ξ − d)2, where
d is the motor-motor distance. We define the dimensionless
constant k̄ ≡ kBT /kl2 as a measure of the stiffness of the
assembly. Therefore, the limit of rigid coupling will be k̄ � 1.
As discussed in Ref. [23], nontrivial dynamic effects can
happen when d and l are commensurable. Additionally, for the
case β �= 0, the strength of the binding interaction can produce
a nonmonotonic behavior of the VF curves for a certain force
range (Fig. 10, inset). In order to be able to compare our results
to the case of nonbounded motors, we typically choose values
of k̄ and d that minimize such commensurability effects in
the rigid limit. In general we observe that velocities at a given
force are typically larger than in the hard-core case. This effect
is expected since rigid coupling enables not only pushing but
also pulling of adjacent motors. The force enhancement due
to the presence of dwell time is also found for rigid coupling.
In Fig. 10 we show several VF curves for different numbers of
motors. Note that for β �= 0 the displacement of one motor is
strongly conditioned to the motion of the rest. This means
that a significant number of motors must be either in the
weakly bound state or sliding down the ratchet potential. This
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FIG. 10. (Color online) Plot of VF curves for the case of rigid
coupling, with d/l = 1.341, β = 1.25, and k̄ = 4 × 10−3. The inset
shows the N = 3 VF curve for k̄ = 10−3,3 × 10−3,4 × 10−3 (ordered
from more to less bumped).

fact implies an effectively larger dwell time, which in turn
implies a faster growth of the stall force with the number
of motors. However, the stall force of the system saturates
for N > 15 at � 35–40 pN (Figs. 10 and 11). On the other
hand, we notice that the velocity at null force VN (0) presents
an overshoot for N = 2,3 motors and stabilizes for N � 5
(Fig. 11, inset). This effect is due to the fact that the minimum
number of consecutive motors over the lower ratchet slope
needed to remove a motor from the minima must be greater
than l/a − 1�, which in our case is 5 (a/l = 0.2). For the
case a = 0, a given motor in the minima could not be removed
by any number of motors and VN (0) would decay with N

until vanishing since the motion of the foremost motor is
constrained to the dynamics of the rest.

B. Raft-induced interactions

Lipid rafts are membrane microdomains that float freely
in the membrane bilayer. When groups of motors bind
specifically to lipid raft domains in vesicles, their motion is
constrained by the size of the microdomain [28]. In this section

0 2 4 6 8 10 12 14
0

10

20

30

40

 

 

N

F
s

(p
N

)

β = 1.25

β = 2.5

0 10 20
0.2

0.4

0.6

 

 

N

V
N

(0
)

(μ
m

/s
)

FIG. 11. (Color online) Plot of Fs vs N for β = 1.25,2.5; k̄ =
5 × 10−3; and Vc � 10−4 μm/s. The stall force of the system saturates
around 35 pN for N � 15 motors. The inset shows VN (0) vs N using
the data in Fig. 10. We appreciate an overshoot on the velocity around
N = 3 and a rapid stabilization as N increases.
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FIG. 12. (Color online) Plot of VF curves for the case of N =
2 and raft-induced interactions with σ/l = 0.341, β = 2.5, and
different raft densities ρ. Open circles denote the VF relationship
for the same parameter values and rigid coupling interaction with
k̄ = 10−3. The inset shows the evolution of the velocity of the cluster
at null force as a function of ρ for β = 1.25.

we incorporate such raft-induced confining interactions in our
model motivated by the experiments in Ref. [28], where the
liposome movement driven by the collective action of Unc104
motors (the analogous kinesin of KIF1A for C. elegans)
showed a very steep dependence on phosphatidylinositol
4,5-biphosphate concentration due to the formation of lipid
rafts. Two different hypotheses were proposed to explain such
phenomenon: dimerization of Unc104 motors or cooperativity
between the monomeric form of the motors. The aim of
this section is to reproduce raftlike conditions and to study
the velocity dependence on the parameters describing this
effective interaction.

Let us consider a raft of length L that contains N motors of
size σ . In order to confine the movement of motors, we will use
a truncated Lennard-Jones potential that will depend on the dis-
tance between the first and last motor φ ≡ xN − x1 > 0. Since
motors can only move in a region L − σ , the potential reads

WR(ξr ) = 4ε

[(
σ

ξr

)12

−
(

σ

ξr

)6]
, (6)

where ξr ≡ L − φ and the expression is only valid for
φ > L − 21/6σ and zero otherwise. This potential will be
added to the hard-core part only for i = 1,N . We define the
dimensionless density of the raft as ρ ≡ Nσ/L. In Fig. 12 we
study how VF curves change as a function of the raft motor
density ρ for N = 2, varying L for a fixed motor size σ . The
presence of raft-induced interactions confines the motion of the
two motors and establishes a well defined mean motor distance
as ρ increases. The stall force is greatly enhanced similarly as
in the hard-core and rigid coupling cases. Actually, in the limit
ρ → 1 the system converges to the rigid coupling case as
expected. However, this convergence does not follow a simple
monotonic growth but an irregular dependence on ρ (Fig. 12,
inset). This dependence is difficult to interpret given the large
number of length scales that could lead to commensurability
effects with L, namely a, l, σ , and 〈ξ 〉. The velocity of the
cluster already converges to the rigid coupling case around
ρ � 0.6; however, this property is missed for N = 3 (data not
shown). For N > 2, the system shows an intermediate behavior
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FIG. 13. Stall force for N = 15 vs k̄ showing the transition
between rigid coupling and hard-core interaction for different motor
sizes σ and β = 1.25. A pronounced dip appears for a certain k̄ range
in which the stall force is considerably reduced.

between hard-core repulsion and strong coupling. Conse-
quently, raftlike interactions can speed up the system eliciting
velocities of ∼0.3–0.5 μm/s, but these are still far from typical
liposome velocities (∼1 μm/s) of Unc104 [28]. This suggests
that the switching behavior of the liposome movement found
in Ref. [28] is probably due to dimerization of Unc104 motors.

C. Transition between rigid coupling and hard-core repulsion

We have previously seen that both rigid and hard-core
interactions produce a nonlinear enhancement on the stall
force of the system. In this section we explore the transition
between these two regimes by changing the parameter k̄

in the limit of large N . In order for the transition to be
smooth, we use WHC−S(ξ ) = WHC(ξ ) + WS(ξ ) by setting a
motor-motor distance d and a motor size σ . In Fig. 13 we
study the dependence of Fs(15) on k̄ for three values of the
motor size σ . The strength of motor fluctuations 〈(ξ − d)2〉
determines the appearance of commensurability effects. Two
main factors change the strength of these fluctuations: the
rigidity of the interaction k̄ and the external load F . For
very strong spring constants motors barely fluctuate and
commensurability effects are predominant, thus the system
is very sensitive to σ and we find strong resonances on the
stall force. On the other hand, as we approach the hard-core
limit, fluctuations are still small since we are found near stall
conditions. In this case, the system resembles the rigid case
except for some long excursions of the motors in the rear of
the cluster. Thus, motor size effects are present in both the
rigid and hard-core limits near stall conditions; however, in
the hard-core limit resonances are less pronounced. We notice
the presence of a pronounced dip around k̄ � 10−2. Hence, a
weak binding interaction between motors leads to a decrease
of the collective stall force in the large-N limit. This can be
explained in simple terms. Let us consider a large cluster of
weakly bound motors in stall conditions such that the cluster is
compressed in the front and only the last motors can fluctuate
significantly. Suppose that a fluctuation drives the last motor
one step backward and the binding interaction is sufficiently
strong that the cluster experiences a restoring force that adds
to the external force. Consequently, fluctuations in the rear of
the cluster will tend to destabilize it. For this situation to occur,

the energy of the interaction must be comparable to the energy
scale of the ratchet for ξ ∼ l, that is, k̄c ∼ kBT /U ∼ 10−2.
However, if motors do not experience any binding interaction,
fluctuations do not affect the cluster.

V. DISCUSSION AND CONCLUSION

We have proposed a two-state noise-driven mechanism to
study the collective action of single-headed KIF1A motors in
vitro extending the study in Ref. [24], which in turn extended
the previous work for the case of vanishing dwell time [22,23].
The presence of finite dwell time in the system reveals
nontrivial phenomena associated with a great enhancement
on the collective force generation of motors and to staircase-
shaped velocity-force curves that arise in the high diffusion
limit. The cooperative mechanism of force generation seems
to be robust within a variety of motor-motor interactions.
This effect is able to produce a two-order-of-magnitude gain
on the collective efficiency up to values of ∼10−2 (typical
efficiencies for individual noise-driven motors may be of
the order of ∼10−4 [25]). The range of maximal forces
KIF1A motors can achieve depends considerably on the choice
of the ratchet height U and the ratio between the average
decay and excitation rates β in our model. A reasonable
predicted range would be around 20–60 pN for clusters of
approximately ten motors, implying that KIF1A would be
able to outperform KIF5 collectively in cooperative tasks,
despite its poor individual performance. In simple terms,
the combination of several motors in a two-state ratchet
enables a switch from a low-force noise-driven mechanism
(∼kBT l/ l2

D) to a filament-binding mechanism with a high-
force scale (∼U/l). The collective stall force at a given
velocity grows faster than proportional to N up to around
five KIF1A motors. This behavior is remarkably different
for KIF5, whose collective forces are weakly dependent on
the number of motors in this regime [12,29]. For N ∼ 5–10
the force scaling of KIF1A remains roughly proportional
to the number of motors, a property that is missed by
KIF5 according to lattice models [10]. Finally, for large N

the total force produced by the motor ensemble eventually
saturates to values that can eventually surpass those achieved
collectively by KIF5.

The presence of dwell time typically produces an increase
on the velocity at a given force per motor, especially in the case
of rigid coupling or raft-induced interactions where diffusion is
effectively reduced within the cluster. However, the maximum
twofold increase of the velocity seems insufficient to explain
some reported in vivo velocities of Unc104 (∼1 μm/s) [28].
With regard to this point, it is worth recalling that dimerization
of KIF1A has been reported in vivo, preserving the alternation
between a weakly bound diffusive state and a strongly bound
state. Under these circumstances, the coexistence of possible
hand-over-hand stepping and a diffusive state could result in a
similar mechanism of cooperativity, while the overall velocity
could be significantly increased.

In this article we have provided a thorough numerical study
of the collective action of single-headed KIF1A motors based
on Brownian dynamics. We predict a dramatic improvement of
the collective performance of these motors for tasks associated
with the transport of membrane-bound cargoes. The results
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rely on a two-state noise-driven model that successfully
explains the motion of a single motor. While the extension
to interacting motors seems plausible, it remains unclear to
what extent this modeling is sufficiently realistic for large
numbers of motors. A salient feature of our results for relatively
small motor clusters is that the collective VF curves have
staircase shapes, which effectively count the number of active
motors in the cluster. This could potentially be used to
infer information about forces in situations where resolving
individual motors may be more feasible than measuring forces
directly. From a biological point of view, our results reinforce
the hypothesis that the specificity of KIF1A to axonal vesicular
trafficking is due to its unique adaptation to cooperative force
generation. From a fundamental physics point of view, we
have shown that Brownian motors based on two-state ratchets
with independent switching and under unequal loading are
remarkably adapted to cooperative force generation. Within
this spirit, rectification mechanisms and spatial confinement
in ratchet systems may be deeply related to the emergence
of cooperativity in nanoscopic transport [30]. Additionally,

hydrodynamic coupling in thermal ratchet motion might also
play an important role [31].

Finally, analytical results might be possible using a discrete
approach. Lattice models for KIF1A have already been shown
to be suitable to study shock formation and nonequilibrium
phase transitions [16,32,33]. In order to incorporate coopera-
tive effects in such models, transitions of blocks of adjacent
motors should be incorporated similarly to what was proposed
in Ref. [24]. This effect is especially relevant in the case of
large clusters under heavy loads as discussed in Sec. III E.
On the other hand, recent evidence shows that lattice models
might be suitable to describe confinement situations. Systems
investigated recently include coupled molecular motors [34]
and coupled molecular spiders [35].
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