113 research outputs found
Neuronal activity patterns in the mediodorsal thalamus and related cognitive circuits are modulated by metabotropic glutamate receptors.
The mediodorsal thalamus (MD) likely plays an important role in cognition as it receives abundant afferent connections from the amygdala and prefrontal cortex (PFC). Indeed, disturbed activity within the MD is thought to precipitate cognitive deficits associated with schizophrenia. As compounds acting at the Group II metabotropic glutamate (mGlu) receptors (subtypes mGlu2/mGlu3) have efficacy in animal models of schizophrenia, we investigated whether a Group II agonist and an mGlu2 positive allosteric modulator (PAM) could modulate MD activity. Extracellular single-unit recordings were made in vivo from MD neurones in anaesthetised rats. Responses were elicited by electrical stimulation of the PFC and/or amygdala, with Group II compounds locally applied as required. The Group II agonist reduced inhibition evoked in the MD: an effect manifested as an increase in short-latency responses, and a decrease in long-latency burst-firing. This disinhibitory action of the Group II receptors in the MD represents a mechanism of potential therapeutic importance as increased inhibition in the MD has been associated with cognitive deficit-onset. Furthermore, as co-application of the mGlu2 PAM did not potentiate the Group II agonist effects in the MD, we suggest that the Group II disinhibitory effect is majority-mediated via mGlu3. This heterogeneity in Group II receptor thalamic physiology bears consequence, as compounds active exclusively at the mGlu2 subtype are unlikely to perturb maladapted MD firing patterns associated with cognitive deficits, with activity at mGlu3 receptors possibly more appropriate. Indeed, polymorphisms in the mGlu3, but not the mGlu2, gene have been detected in patients with schizophrenia
The role of thalamic group II mGlu receptors in health and disease
The thalamus plays a pivotal role in the integration and processing of sensory, motor, and cognitive information. It is therefore important to understand how the thalamus operates in states of both health and disease. In the present review, we discuss the function of the Group II metabotropic glutamate (mGlu) receptors within thalamic circuitry, and how they may represent therapeutic targets in treating disease states associated with thalamic dysfunction
Near-infrared light increases ATP, extends lifespan and improves mobility in aged Drosophila melanogaster.
Ageing is an irreversible cellular decline partly driven by failing mitochondrial integrity. Mitochondria accumulate DNA mutations and reduce ATP production necessary for cellular metabolism. This is associated with inflammation. Near-infrared exposure increases retinal ATP in old mice via cytochrome c oxidase absorption and reduces inflammation. Here, we expose fruitflies daily to 670 nm radiation, revealing elevated ATP and reduced inflammation with age. Critically, there was a significant increase in average lifespan: 100-175% more flies survived into old age following 670 nm exposure and these had significantly improved mobility. This may be a simple route to extending lifespan and improving function in old age
P2X7R modulation of visually evoked synaptic responses in the retina.
P2X7Rs are distributed throughout all layers of the retina, and thus, their localisation on various cell types puts into question their specific site(s) of action. Using a dark-adapted, ex vivo mouse retinal whole mount preparation, the present study aimed to characterise the effect of P2X7R activation on light-evoked, excitatory RGC ON-field excitatory post-synaptic potentials (fEPSPs) and on outer retinal electroretinogram (ERG) responses under comparable conditions. The pharmacologically isolated NMDA receptor-mediated RGC ON-fEPSP was reduced in the presence of BzATP, an effect which was significantly attenuated by A438079 and other selective P2X7R antagonists A804598 or AF27139. In physiological Krebs medium, BzATP induced a significant potentiation of the ERG a-wave, with a concomitant reduction in the b-wave and the power of the oscillatory potentials. Conversely, in the pharmacologically modified Mg(2+)-free perfusate, BzATP reduced both the a-wave and b-wave. The effects of BzATP on the ERG components were suppressed by A438079. A role for P2X7R function in visual processing in both the inner and outer retina under physiological conditions remains controversial. The ON-fEPSP was significantly reduced in the presence of A804598 but not by A438079 or AF27139. Furthermore, A438079 did not have any effect on the ERG components in physiological Krebs but potentiated and reduced the a-wave and b-wave, respectively, when applied to the pharmacologically modified medium. Therefore, activation of P2X7Rs affects the function in the retinal ON pathway. The presence of a high concentration of extracellular ATP would most likely contribute to the modulation of visual transmission in the retina in the pathophysiological microenvironment
In vitro characterization of a spontaneously immortalized human Muller cell line (MIO-M1)
purpose. To characterize a spontaneously immortalized human MuÌller cell line and to determine whether it retains the characteristics of primary isolated cells without undergoing differentiation in vitro.
methods. An immortalized cell line obtained from human retina was investigated for the expression of known markers of MuÌller cells, including cellular retinaldehyde binding protein (CRALBP), glutamine synthetase, epidermal growth factor receptor (EGF-R), α-smooth muscle actin (α-SMA), and glial fibrillary acidic protein (GFAP). Also examined were the morphologic features of these cells, by scanning and transmission electron microscopy, and their functional characteristics, by electrogenic responses to glutamate. In addition, comparative studies were made of these cells with primary cultures of freshly isolated human MuÌller cells.
results. The cells expressed CRALBP, EGF-R, glutamine synthetase, and α-SMA, as judged by confocal microscopy and Western blot analysis of cell lysates. Western blot analysis did not detect GFAP in cell lysates, but confocal microscopy showed that occasional cells expressed GFAP after detachment from the monolayer. The morphologic features of the cells examined, as judged by scanning and transmission electron microscopy, resemble those of cells derived from primary cell cultures. They possess villous projections on their apical surfaces and contain loose bundles of microtubules aligned parallel to one another and the long axis of the cell process. Characteristically, they contain abundant deposits of glycogen particles that do not differ from those seen in primary isolated cells. Preliminary recordings with intracellular electrodes revealed that these cells have properties similar to those described for mammalian MuÌller cells and depolarize in response to l-glutamate without significant change in membrane resistance, consistent with the well-established electrogenic uptake of this amino acid.
conclusions. A spontaneously immortalized MuÌller cell line was characterized that retains the characteristics of primary isolated cells in culture. To the authorsâ knowledge, it constitutes the first human MuÌller cell line reported in the literature. It has been named MIO-M1 (Moorfields/Institute of Ophthalmology-MuÌller 1) after the authorsâ institution. Availability of this human cell line will facilitate studies designed to obtain a better understanding of the role of MuÌller cells in normal and pathologic conditions
Astrocytes modulate thalamic sensory processing via mGlu2 receptor activation.
Astrocytes possess many of the same signalling molecules as neurons. However, the role of astrocytes in information processing, if any, is unknown. Using electrophysiological and imaging methods, we report the first evidence that astrocytes modulate neuronal sensory inhibition in the rodent thalamus. We found that mGlu2 receptor activity reduces inhibitory transmission from the thalamic reticular nucleus to the somatosensory ventrobasal thalamus (VB): mIPSC frequencies in VB slices were reduced by the Group II mGlu receptor agonist LY354740, an effect potentiated by mGlu2 positive allosteric modulator (PAM) LY487379 co-application (30 nM LY354740: 10.0 ± 1.6% reduction; 30 nM LY354740 & 30 ΌM LY487379: 34.6 ± 5.2% reduction). We then showed activation of mGlu2 receptors on astrocytes: astrocytic intracellular calcium levels were elevated by the Group II agonist, which were further potentiated upon mGlu2 PAM co-application (300 nM LY354740: ratio amplitude 0.016 ± 0.002; 300 nM LY354740 & 30 ΌM LY487379: ratio amplitude 0.035 ± 0.003). We then demonstrated mGlu2-dependent astrocytic disinhibition of VB neurons in vivo: VB neuronal responses to vibrissae stimulation trains were disinhibited by the Group II agonist and the mGlu2 PAM (LY354740: 156 ± 12% of control; LY487379: 144 ± 10% of control). Presence of the glial inhibitor fluorocitrate abolished the mGlu2 PAM effect (91 ± 5% of control), suggesting the mGlu2 component to the Group II effect can be attributed to activation of mGlu2 receptors localised on astrocytic processes within the VB. Gating of thalamocortical function via astrocyte activation represents a novel sensory processing mechanism. As this thalamocortical circuitry is important in discriminative processes, this demonstrates the importance of astrocytes in synaptic processes underlying attention and cognition
Potentiation of sensory responses in ventrobasal thalamus in vivo via selective modulation of mGlu1 receptors with a positive allosteric modulator.
Metabotropic glutamate subtype 1 (mGlu1) receptor is thought to play a role in synaptic responses in thalamic relay nuclei. The aim of this study was to evaluate the positive allosteric modulator (PAM) Ro67-4853 as a tool to modulate thalamic mGlu1 receptors on single thalamic neurones in vivo. Ro67-4853, applied by iontophoresis onto ventrobasal thalamus neurones of urethane-anaesthetised rats, selectively enhanced responses to the agonist (S)-3,5-dihydroxy-phenylglycine (DHPG), an effect consistent with mGlu1 potentiation. The PAM was also able to enhance maintained responses to 10 Hz trains of sensory stimulation of the vibrissae, but had little effect on responses to single sensory stimuli. Thus Ro67-4853 appears to be a highly selective tool that can be useful in investigating how mGlu1 receptor potentiation can alter neural processing in vivo. Our results show the importance of mGlu1 in sensory processing and attention mechanisms at the thalamic level and suggest that positive modulation of mGlu1 receptors might be a useful mechanism for enhancing cognitive and attentional processes
Responses of primate LGN cells to moving stimuli involve a constant background modulation by feedback from area MT
The feedback connections from the cortical motion area middle temporal (MT), to layer 6 of the primary visual cortex (V1), have the capacity to drive a cascaded feedback influence from the layer 6 cortico-geniculate cells back to the lateral geniculate nucleus (LGN) relay cells. This introduces the possibility of a re-entrant motion signal affecting the relay of the retinal input through the LGN to the visual cortex. The question is whether the response of LGN cells to moving stimuli involves a component derived from this feedback. By producing a reversible focal pharmacological block of the activity of an MT direction column we show the presence of such an influence from MT on the responses of magno, parvo and koniocellular cells in the macaque LGN. The pattern of effect in the LGN reflects the direction bias of the MT location inactivated. This suggests a moving stimulus is captured by iterative interactions in the circuit formed by visual cortical areas and visual thalamus
Improving mitochondrial function significantly reduces metabolic, visual, motor and cognitive decline in aged Drosophila melanogaster
Mitochondria play a major role in aging. Over time, mutations accumulate in mitochondrial DNA leading to reduced adenosine triphosphate (ATP) production and increased production of damaging reactive oxygen species. If cells fail to cope, they die. Reduced ATP will result in declining cellular membrane potentials leading to reduced central nervous system function. However, aged mitochondrial function is improved by long wavelength light (670 nm) absorbed by cytochrome c oxidase in mitochondrial respiration. In Drosophila, lifelong 670-nm exposure extends lifespan and improves aged mobility. Here, we ask if improved mitochondrial metabolism can reduce functional senescence in metabolism, sensory, locomotor, and cognitive abilities in old flies exposed to 670 nm daily for 1 week. Exposure significantly increased cytochrome c oxidase activity, whole body energy storage, ATP and mitochondrial DNA content, and reduced reactive oxygen species. Retinal function and memory were also significantly improved to levels found in 2-week-old flies. Mobility improved by 60%. The mode of action is likely related to improved energy homeostasis increasing ATP availability for ionic ATPases critical for maintenance of neuronal membrane potentials. 670-nm light exposure may be a simple route for resolving problems of aging
Genotypeâphenotype correlation in migraine without aura focusing on the rs1835740 variant on 8q22.1
A large two-stage GWAS by Antilla et al. reported the minor allele of rs1835740 on 8q22.1 to be associated with common types of migraine. The objective of the present study was to determine the clinical correlate of the variant in migraine without aura (MO). Clinical data on 339 successfully genotyped MO patients (patients with attacks of migraine without aura and no attacks of migraine with aura) were obtained by an extensive validated semi-structured telephone interview performed by a physician or a trained senior medical student. Reliable, systematic and extensive data on symptoms, age of onset, attack frequencies and duration, relevant comorbidity, specific provoking factors including different hormonal factors in females, and effect and use of medication, both abortive and prophylactic, were thereby obtained. A comparison of carriers and non-carriers were performed. Comparison of homozygotes with heterozygotes was not performed as the number of homozygotes was too small for statistical purposes. Data from other MO populations in the GWAS by Antilla et al. were not included as phenotype and clinical data were obtained differently. While thousands of patients are needed to detect a genetic variant like rs1835740, 339 are sufficient to detect meaningful clinical differences. 136 of 339 patients were carriers of the variant, 15 were homozygous. Comparison of carriers with non-carriers showed no significant difference in any of the parameters studied. In conclusion, the rs1835740 variant has no significant influence on the clinical expression of MO
- âŠ