27 research outputs found
Prevalence of six viruses in potato seed tubers produced in informal seed system in the North West Region of Cameroon.
Evidence has accumulated that there is a trade-off between benefits and costs associated with rapid growth. A trade-off between growth rates and critical. swimming speed (U-crit) had been also reported to be common in teleost fish. We hypothesize that growth acceleration in the F-3 generation of "all-fish" growth hormone gene (GH) transgenic common carp (Cyprinus carpio L.) would reduce the swimming abilities. Growth and swimming performance between transgenic fish and non-transgenic controls were) compared. The results showed that transgenic fish had a mean body weight 1.4-1.9-fold heavier, and a mean specific growth rate (SGR) value 6%-10% higher than the controls. Transgenic fish, however, had a mean absolute U-crit (cm/s) value 22% or mean relative Ucrit (BL/s) value 24% lower than the controls. It suggested that fast-growing "all-fish" GH-transgenic carp were inferior swimmers. It is also supported that there was a trade-off between growth rates and swimming performance, i.e. faster-growing individuals had lower critical swimming speed
Interactions of the Human MCM-BP Protein with MCM Complex Components and Dbf4
MCM-BP was discovered as a protein that co-purified from human cells with MCM proteins 3 through 7; results which were recapitulated in frogs, yeast and plants. Evidence in all of these organisms supports an important role for MCM-BP in DNA replication, including contributions to MCM complex unloading. However the mechanisms by which MCM-BP functions and associates with MCM complexes are not well understood. Here we show that human MCM-BP is capable of interacting with individual MCM proteins 2 through 7 when co-expressed in insect cells and can greatly increase the recovery of some recombinant MCM proteins. Glycerol gradient sedimentation analysis indicated that MCM-BP interacts most strongly with MCM4 and MCM7. Similar gradient analyses of human cell lysates showed that only a small amount of MCM-BP overlapped with the migration of MCM complexes and that MCM complexes were disrupted by exogenous MCM-BP. In addition, large complexes containing MCM-BP and MCM proteins were detected at mid to late S phase, suggesting that the formation of specific MCM-BP complexes is cell cycle regulated. We also identified an interaction between MCM-BP and the Dbf4 regulatory component of the DDK kinase in both yeast 2-hybrid and insect cell co-expression assays, and this interaction was verified by co-immunoprecipitation of endogenous proteins from human cells. In vitro kinase assays showed that MCM-BP was not a substrate for DDK but could inhibit DDK phosphorylation of MCM4,6,7 within MCM4,6,7 or MCM2-7 complexes, with little effect on DDK phosphorylation of MCM2. Since DDK is known to activate DNA replication through phosphorylation of these MCM proteins, our results suggest that MCM-BP may affect DNA replication in part by regulating MCM phosphorylation by DDK
The MCM-Binding Protein ETG1 Aids Sister Chromatid Cohesion Required for Postreplicative Homologous Recombination Repair
The DNA replication process represents a source of DNA stress that causes potentially spontaneous genome damage. This effect might be strengthened by mutations in crucial replication factors, requiring the activation of DNA damage checkpoints to enable DNA repair before anaphase onset. Here, we demonstrate that depletion of the evolutionarily conserved minichromosome maintenance helicase-binding protein ETG1 of Arabidopsis thaliana resulted in a stringent late G2 cell cycle arrest. This arrest correlated with a partial loss of sister chromatid cohesion. The lack-of-cohesion phenotype was intensified in plants without functional CTF18, a replication fork factor needed for cohesion establishment. The synergistic effect of the etg1 and ctf18 mutants on sister chromatid cohesion strengthened the impact on plant growth of the replication stress caused by ETG1 deficiency because of inefficient DNA repair. We conclude that the ETG1 replication factor is required for efficient cohesion and that cohesion establishment is essential for proper development of plants suffering from endogenous DNA stress. Cohesion defects observed upon knockdown of its human counterpart suggest an equally important developmental role for the orthologous mammalian ETG1 protein
Chemotherapy elicits pro-metastatic extracellular vesicles in breast cancer models
Cytotoxic chemotherapy is an effective treatment for invasive breast cancer. However, experimental studies in mice also suggest that chemotherapy has pro-metastatic effects. Primary tumours release extracellular vesicles (EVs), including exosomes, that can facilitate the seeding and growth of metastatic cancer cells in distant organs, but the effects of chemotherapy on tumour-derived EVs remain unclear. Here we show that two classes of cytotoxic drugs broadly employed in pre-operative (neoadjuvant) breast cancer therapy, taxanes and anthracyclines, elicit tumour-derived EVs with enhanced pro-metastatic capacity. Chemotherapy-elicited EVs are enriched in annexin A6 (ANXA6), a Ca2+-dependent protein that promotes NF-κB-dependent endothelial cell activation, Ccl2 induction and Ly6C+CCR2+ monocyte expansion in the pulmonary pre-metastatic niche to facilitate the establishment of lung metastasis. Genetic inactivation of Anxa6 in cancer cells or Ccr2 in host cells blunts the prometastatic effects of chemotherapy-elicited EVs. ANXA6 is detected, and potentially enriched, in the circulating EVs of breast cancer patients undergoing neoadjuvant chemotherapy
Determination of scanned virus-free potato planting materials by positive selection and screening of tubers from seed stores in the western highlands of Cameroon
Positive selection for the identification of virus–free potato planting material was evaluated in four locations in Cameroon. Leaves from asymptomatic plants were randomly collected, the plants marked and tubers collected four weeks later, and screened with DAS-ELISA for PLRV, PVY, PVA, PVX, PVS and PVM presence. Five viruses were prevalent in leaves while four prevalent in tubers. Potato virus M was highly prevalent in leaves and tubers while PVY was high only in leaves. Potato virus A was absent in both leaves and tubers while PVX was free only in tubers. A positive correlation was observed between virus prevalence in leaves and tubers (r=0.806). The prevalence of the six viruses in potato seed tubers from four seed stores was tested. Potato virus M was the most prevalent, while PLRV was the least. Small, medium and large tuber sizes were tested for the viruses, and infection rates decreased significantly the bigger the tuber size. Positive selection though not highly efficient can be recommended for resource-poor farmers, to control the economically important potato viruses. Tuber size can serve as a guide to identify healthy tubers, but must be combined with laboratory tests for effective use in selecting seeds for planting.Keywords: Potato viruses, virus-free tubers, positive selection