32 research outputs found

    Finite element approach and mathematical formulation of viscoelastic auxetic honeycomb structures for impact mitigation

    Get PDF
    Auxetic structures are designed to be used for producing auxetic materials with controllable mechanical properties. The present study treats a design of viscoelastic auxetic honeycomb structures using numerical approach and mathematical formulation for impact mitigation. In order to increase the energy absorption capacity, viscoelastic material has been added into auxetic structure as it has capability to dissipate energy under impact loading. Kelvin-Voigt and Maxwell models were employed to model viscoelastic components. The auxetic structure was then subjected to impact load with linear and nonlinear load functions. Dynamic analysis was carried out on a star honeycomb structure using continuum mechanics. Influence of different parameters on response function was then further studied. The primary outcome of this research is the development of viscoelastic auxetic honeycomb structural design for predicting the impact resistance under impact loading

    Expert opinions on informational and supportive needs and sources of obtaining information in patients with inflammatory bowel disease: a Delphi consensus study

    Get PDF
    BackgroundThe present study introduces informational and supportive needs and sources of obtaining information in patients with inflammatory bowel disease (IBD) through a three-round Expert Delphi Consensus Opinions method.MethodsAccording to our previous scoping review, important items in the area of informational and supportive needs and sources of obtaining information were elucidated. After omitting duplicates, 56 items in informational needs, 36 items in supportive needs, and 36 items in sources of obtaining information were retrieved. Both open- and close-ended questions were designed for each category in the form of three questionnaires. The questionnaires were sent to selected experts from different specialties. Experts responded to the questions in the first round. Based on the feedback, questions were modified and sent back to the experts in the second round. This procedure was repeated up to the third round.ResultsIn the first round, five items from informational needs, one item from supportive needs, and seven items from sources of obtaining information were identified as unimportant and omitted. Moreover, two extra items were proposed by the experts, which were added to the informational needs category. In the second round, seven, three, and seven items from informational needs, supportive needs, and sources of obtaining information were omitted due to the items being unimportant. In the third round, all the included items gained scores equal to or greater than the average and were identified as important. Kendall coordination coefficient W was calculated to be 0.344 for information needs, 0.330 for supportive needs, and 0.325 for sources of obtaining information, indicating a fair level of agreement between experts.ConclusionsOut of 128 items in the first round, the omission of 30 items and the addition of two items generated a 100-item questionnaire for three sections of informational needs, supportive needs, and sources of obtaining information with a high level of convergence between experts' viewpoints

    Using Finite Element Approach for Crashworthiness Assessment of a Polymeric Auxetic Structure Subjected to the Axial Loading

    Get PDF
    Polyurethane foams are one of the most common auxetic structures regarding energy absorption enhancement. This present study evaluates the result reliability of two different numerical approaches, the H-method and the P-method, to obtain the best convergence solution. A polymeric re-entrant cell is created with a beam element and the results of the two different methods are compared. Additionally, the numerical results compare well with the analytical solution. The results show that there is a good agreement between converged FE models and the analytical solution. Regarding the computational cost, the P-method is more efficient for simulating the re-entrant structure subjected to axial loading. During the second part of this study, the re-entrant cell is used for generating a polymeric auxetic cellular tube. The mesh convergence study is performed on the cellular structures using the H- and P- methods. The cellular tube is subjected to tensional and compressive loading, the module of elasticity and Poisson’s ration to calculate different aspect ratios. A nonlinear analysis is performed to compare the dynamic response of a cellular tube versus a solid tube. The crashworthiness indicators are addressed and the results are compared with equivalent solid tubes. The results show that the auxetic cellular tubes have better responses against compressive loading. The primary outcome of this research is to assess a reliable FE approach for re-entrant structures under axial loading

    The global burden of cancer attributable to risk factors, 2010-19 : a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background Understanding the magnitude of cancer burden attributable to potentially modifiable risk factors is crucial for development of effective prevention and mitigation strategies. We analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 to inform cancer control planning efforts globally. Methods The GBD 2019 comparative risk assessment framework was used to estimate cancer burden attributable to behavioural, environmental and occupational, and metabolic risk factors. A total of 82 risk-outcome pairs were included on the basis of the World Cancer Research Fund criteria. Estimated cancer deaths and disability-adjusted life-years (DALYs) in 2019 and change in these measures between 2010 and 2019 are presented. Findings Globally, in 2019, the risk factors included in this analysis accounted for 4.45 million (95% uncertainty interval 4.01-4.94) deaths and 105 million (95.0-116) DALYs for both sexes combined, representing 44.4% (41.3-48.4) of all cancer deaths and 42.0% (39.1-45.6) of all DALYs. There were 2.88 million (2.60-3.18) risk-attributable cancer deaths in males (50.6% [47.8-54.1] of all male cancer deaths) and 1.58 million (1.36-1.84) risk-attributable cancer deaths in females (36.3% [32.5-41.3] of all female cancer deaths). The leading risk factors at the most detailed level globally for risk-attributable cancer deaths and DALYs in 2019 for both sexes combined were smoking, followed by alcohol use and high BMI. Risk-attributable cancer burden varied by world region and Socio-demographic Index (SDI), with smoking, unsafe sex, and alcohol use being the three leading risk factors for risk-attributable cancer DALYs in low SDI locations in 2019, whereas DALYs in high SDI locations mirrored the top three global risk factor rankings. From 2010 to 2019, global risk-attributable cancer deaths increased by 20.4% (12.6-28.4) and DALYs by 16.8% (8.8-25.0), with the greatest percentage increase in metabolic risks (34.7% [27.9-42.8] and 33.3% [25.8-42.0]). Interpretation The leading risk factors contributing to global cancer burden in 2019 were behavioural, whereas metabolic risk factors saw the largest increases between 2010 and 2019. Reducing exposure to these modifiable risk factors would decrease cancer mortality and DALY rates worldwide, and policies should be tailored appropriately to local cancer risk factor burden. Copyright (C) 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.Peer reviewe

    Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BackgroundDisorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021.MethodsWe estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined.FindingsGlobally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer.InterpretationAs the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed

    Miniaturised ultra-wideband circularly polarised antenna with modified ground plane

    Get PDF
    A unique coplanar-waveguide (CPW)-fed circularly polarised square slot antenna with enhanced impedance bandwidth (IBW) is presented. The antenna structure includes a pair of rectangular-shaped notches located at two opposite corners of the slot for achieving a significantly enhanced IBW of 12.06 GHz (2.76–14.82 GHz), and a pair of reverse L-shaped ground arms in the slot for realising circularly polarised radiation with 1.86 GHz (4.27–6.13 GHz) bandwidth. This proposed technique has the advantages of covering the whole of the ultra-wideband spectrum (3.1–10.6 GHz), an average gain of 3 dBi and a reduced antenna size of 25 × 25 × 0.8 mm3

    CPW-fed printed UWB antenna with open-loop inverted triangular-shaped slot for WLAN band filtering

    Get PDF
    A compact CPW-fed printed monopole slot antenna is presented for ultra-wideband (UWB) applications. The antenna comprises of a dome-shaped radiating element in which embedded is an open-loop inverted triangular-shaped slot (TSS). The antenna is fed through a coplanar waveguide to provide an ultra-wide impedance bandwidth of 8.95 GHz (2.58–11.53 GHz) which corresponds to a bandwidth ratio of 1:4.46 for VSWR <2. The antenna possesses a notch band functionality to filter out interfering C-band signals like wireless local-area network (WLAN). The notch band frequency is determined by physical parameters defining the TSS that allows fine control of the notch's location. The proposed antenna also possesses a flat gain response expect at the notched band and occupies a relatively small volume of 25 × 25 × 0.8 mm3 for ease of system integration

    Integrating principal component analysis and vector quantization with support vector regression for sulfur content prediction in HDS process

    No full text
    An accurate prediction of sulfur content is very important for the proper operation and product quality control in hydrodesulfurization (HDS) process. For this purpose, a reliable data- driven soft sensors utilizing Support Vector Regression (SVR) was developed and the effects of integrating Vector Quantization (VQ) with Principle Component Analysis (PCA) were studied on the assessment of this soft sensor. First, in pre-processing step the PCA and VQ techniques were used to reduce dimensions of the original input datasets. Then, the compressed datasets were used as input variables for the SVR model. Experimental data from the HDS setup were employed to validate the proposed integrated model. The integration of VQ/PCA techniques with SVR model was able to increase the prediction accuracy of SVR. The obtained results show that integrated technique (VQ-SVR) was better than (PCA-SVR) in prediction accuracy. Also, VQ decreased the sum of the training and test time of SVR model in comparison with PCA. For further evaluation, the performance of VQ-SVR model was also compared to that of SVR. The obtained results indicated that VQ-SVR model delivered the best satisfactory predicting performance (AARE= 0.0668 and R2= 0.995) in comparison with investigated models
    corecore