98 research outputs found

    Benchmarking of survival outcomes following haematopoietic stem cell transplantation (HSCT): an update of the ongoing project of the European Society for Blood and Marrow Transplantation (EBMT) and Joint Accreditation Committee of ISCT and EBMT (JACIE)

    Full text link
    Artículo escrito por un elevado número de autores, solo se referencian el que aparece en primer lugar, el nombre del grupo de colaboración, si lo hubiere, y los autores pertenecientes a la UAMFrom 2016 EBMT and JACIE developed an international risk-adapted benchmarking program of haematopoietic stem cell transplant (HSCT) outcome to provide individual EBMT Centers with a means of quality-assuring the HSCT process and meeting FACT-JACIE accreditation requirements relating to 1 year survival outcomes. Informed by previous experience from Europe, North America and Australasia, the Clinical Outcomes Group (COG) established criteria for patient and Center selection, and a set of key clinical variables within a dedicated statistical model adapted to the capabilities of the EBMT Registry. The first phase of the project was launched in 2019 to test the acceptability of the benchmarking model through assessment of Centers’ performance for 1-year data completeness and survival outcomes of autologous and allogeneic HSCT covering 2013–2016. A second phase was delivered in July 2021 covering 2015–2019 and including survival outcomes. Reports of individual Center performance were shared directly with local principal investigators and their responses were assimilated. The experience thus far has supported the feasibility, acceptability and reliability of the system as well as identifying its limitations. We provide a summary of experience and learning so far in this ‘work in progress’, as well as highlighting future challenges of delivering a modern, robust, data-complete, risk-adapted benchmarking program across new EBMT Registry system

    Autologous Hematopoietic Stem Cell Transplantation as a Treatment Option for Aggressive Multiple Sclerosis

    Get PDF
    Opinion statement: Despite the development of several injectable or oral treatments for relapsing-remitting multiple sclerosis (RRMS), it remains difficult to treat patients with aggressive disease, and many of these continue to develop severe disability. During the last two decades autologous hematopoietic stem cell transplantation (aHSCT) has been explored with the goal to eliminate an aberrant immune system and then re-install a healthy and tolerant one from hematopoietic precursor cells that had been harvested from the patient prior to chemotherapy. Clinical studies have shown that aHSCT is able to completely halt disease activity in the majority of patients with aggressive RRMS. Research on the mechanisms of action supports that aHSCT indeed leads to renewal of a healthy immune system. Below we will summarize important aspects of aHSCT and mention the currently best-examined regime

    How Can Accreditation Bodies, Such as JACIE or FACT, Support Centres in Getting Qualified?

    Get PDF
    AbstractThe FACT-JACIE accreditation system is based on a standard-driven process covering all the steps of HSC transplant activity, from donor selection to clinical care. Since the first approval of the First Edition of the Standards in 1998, over 360 HSCT programmes or facilities have been accredited at least once, most of them achieving subsequent re-accreditations (Snowden et al. 2017). The positive impact of the accreditation process in the EBMT Registry has been well established (Gratwohl et al. 2014). Starting with version 6.1, the standards include new items specifically developed for other cellular therapy products, with special reference to immune effector cells (IECs). This reflects the rapid evolution of the field of cellular therapy, primarily (but not exclusively) through the use of genetically modified cells, such as CAR-T cells. FACT-JACIE standards cover a wide range of important aspects that can be of use for centres that aim to be accredited in their countries to provide IEC therapy. Notably, FACT-JACIE accreditation itself is a key (or even a prerequisite) condition in some countries for approval by health authorities to provide commercial CAR-T cell therapy and is also valued by pharmaceutical companies (both those developing clinical trials and those manufacturing commercial products), which also inspect the cell therapy programmes and facilities established at each centre (Yakoub-Agha et al. 2020). Interest in applying for FACT-JACIE accreditation that includes IEC therapeutic programmes is clearly increasing, from four applications in 2017 to 36 applications approved in 2019. The standards do not cover the manufacturing of such cells but include the chain of responsibilities when the product is provided by a third party (Maus and Nikiforow 2017). In any case, all the steps in the process in which the centre is involved (e.g., patient or donor evaluations, cell collection, cell reception, and storage) are covered by the standards, including the appropriate agreements with the internal partners, including the pharmacy department. In addition, from a clinical perspective, IECs may require special safety monitoring systems due to the high frequency of acute adverse events related to the massive immunological reaction against the tumour. Although examples and explanations are found in the standard manual, here, the special importance of identifying and managing cytokine release syndrome (CRS) should be emphasized, and the standards focus not on specific therapeutic algorithms but on ensuring that medical and nursing teams are sufficiently trained in the early detection of this and other potential complications (e.g., neurological complications). They also pay attention to the full-time availability within the institution and its pharmacy of the necessary medication to address complications and the capacitation and involvement of Intensive Care and Neurology Department professionals to provide urgent care if needed. Forthcoming cellular therapy products, currently under investigation, will show a wider range of risk profiles, therefore requiring product-specific risk assessment and consequent adaptation of the clinical procedures for different classes of products. The FACT-JACIE standards will continue to adapt to these future needs to assist centres in their achievement of optimal clinical outcomes

    A non-traditional approach to cryopreservation by ultra-rapid cooling for human mesenchymal stem cells

    Get PDF
    Cryopreservation is the most common method for long-term cell storage. Successful cryopreservation of cells depends on optimal freezing conditions, freezer storage and a proper thawing technique to minimize the cellular damage that can occur during the cryopreservation process. These factors are especially critical for sensitive stem cells with a consequential and significant impact on viability and functionality. Until now, slow-freezing has been the routine method of cryopreservation but, more recently rapid-cooling techniques have also been proposed. In this study, an ultra-rapid cooling technique [1] was performed for the first time on human mesenchymal stem cells and the effectiveness evaluated in comparison with the conventional slow-freezing procedure. A thin nylon-membrane carrier was used combined with different cryoprotective agents: dimethyl sulfoxide, ethylene glycol and/or trehalose. Various aspects of the low cryoprotective doses and the ultra-rapid cooling procedure of the human mesenchymal stem cells were examined including: the physical properties of the nylon-support, cells encumbrance, viability, proliferation and differentiation. The expression of cell surface markers and apoptosis were also investigated. The study used an ultra-rapid cooling/warming method and showed an overall cell integrity preservation (83-99%), with no significant differences between dimethyl sulfoxide or ethylene glycol treatment (83-87%) and a substantial cell viability of 68% and 51%, respectively. We confirmed a discrepancy also observed by other authors in cell viability and integrity, which implies that caution is necessary when assessing and reporting cell viability data

    Local injection of bone marrow progenitor cells for the treatment of anal sphincter injury: in-vitro expanded versus minimally-manipulated cells

    Get PDF
    Background: Anal incontinence is a disabling condition that adversely affects the quality of life of a large number of patients, mainly with anal sphincter lesions. In a previous experimental work, in-vitro expanded bone marrow (BM)-derived mesenchymal stem cells (MSC) were demonstrated to enhance sphincter healing after injury and primary repair in a rat preclinical model. In the present article we investigated whether unexpanded BM mononuclear cells (MNC) may also be effective. Methods: Thirty-two rats, divided into groups, underwent sphincterotomy and repair (SR) with primary suture of anal sphincters plus intrasphincteric injection of saline (CTR), or of in-vitro expanded MSC, or of minimally manipulated MNC; moreover, the fourth group underwent sham operation. At day 30, histologic, morphometric, in-vitro contractility, and functional analysis were performed. Results: Treatment with both MSC and MNC improved muscle regeneration and increased contractile function of anal sphincters after SR compared with CTR (p < 0.05). No significant difference was observed between the two BM stem cell types used. GFP-positive cells (MSC and MNC) remained in the proximity of the lesion site up to 30 days post injection. Conclusions: In the present study we demonstrated in a preclinical model that minimally manipulated BM-MNC were as effective as in-vitro expanded MSC for the recovery of anal sphincter injury followed by primary sphincter repair. These results may serve as a basis for improving clinical applications of stem cell therapy in human anal incontinence treatment

    Interaction between Human NK Cells and Bone Marrow Stromal Cells Induces NK Cell Triggering: Role of NKp30 and NKG2D Receptors

    Get PDF
    Abstract In this study we have analyzed the interaction between in vitro cultured bone marrow stromal cells (BMSC) and NK cells. Ex vivo-isolated NK cells neoexpressed the activation Ag CD69 and released IFN-γ and TNF-α upon binding with BMSC. Production of these proinflammatory cytokines was dependent on ligation of ICAM1 expressed on BMSC and its receptor LFA1 on NK cells. Furthermore, the NKp30, among natural cytotoxicity receptors, appeared to be primarily involved in triggering NK cells upon interaction with BMSC. Unexpectedly, autologous IL-2-activated NK cells killed BMSC. Again, LFA1/ICAM1 interaction plays a key role in NK/BMSC interaction; this interaction is followed by a strong intracellular calcium increase in NK cells. More importantly, NKG2D/MHC-I-related stress-inducible molecule A and/or NKG2D/UL-16 binding protein 3 engagement is responsible for the delivery of a lethal hit. It appears that HLA-I molecules do not protect BMSC from NK cell-mediated injury. Thus, NK cells, activated upon binding with BMSC, may regulate BMSC survival

    The TCR Repertoire Reconstitution in Multiple Sclerosis: Comparing One-Shot and Continuous Immunosuppressive Therapies

    Get PDF
    Natalizumab (NTZ) and autologous hematopoietic stem cell transplantation (AHSCT) are two successful treatments for relapsing-remitting multiple sclerosis (RRMS), an autoimmune T-cell-driven disorder affecting the central nervous system that is characterized by relapses interspersed with periods of complete or partial recovery. Both RRMS treatments have been documented to impact T-cell subpopulations and the T-cell receptor (TCR) repertoire in terms of clone frequency, but, so far, the link between T-cell naive and memory populations, autoimmunity, and treatment outcome has not yet been established hindering insight into the post-treatment TCR landscape of MS patients. To address this important knowledge gap, we tracked peripheral T-cell subpopulations (naïve and memory CD4+ and CD8+) across 15 RRMS patients before and after two years of continuous treatment (NTZ) and a single treatment course (AHSCT) by high-throughput TCRß sequencing. We found that the two MS treatments left treatment-specific multidimensional traces in patient TCRß repertoire dynamics with respect to clonal expansion, clonal diversity and repertoire architecture. Comparing MS TCR sequences with published datasets suggested that the majority of public TCRs belonged to virus-associated sequences. In summary, applying multi-dimensional computational immunology to a TCRß dataset of treated MS patients, we show that qualitative changes of TCRß repertoires encode treatment-specific information that may be relevant for future clinical trials monitoring and personalized MS follow-up, diagnosis and treatment regimes. Natalizumab (NTZ) and autologous hematopoietic stem cell transplantation (AHSCT) are two successful treatments for relapsing–remitting multiple sclerosis (RRMS), an autoimmune T-cell–driven disorder affecting the central nervous system that is characterized by relapses interspersed with periods of complete or partial recovery. Both RRMS treatments have been documented to impact T-cell subpopulations and the T-cell receptor (TCR) repertoire in terms of clone frequency, but, so far, the link between T-cell naive and memory populations, autoimmunity, and treatment outcome has not yet been established hindering insight into the posttreatment TCR landscape of MS patients. To address this important knowledge gap, we tracked peripheral T-cell subpopulations (naive and memory CD4+ and CD8+) across 15 RRMS patients before and after 2 years of continuous treatment (NTZ) and a single treatment course (AHSCT) by high-throughput TCRβ sequencing. We found that the two MS treatments left treatment-specific multidimensional traces in patient TCRβ repertoire dynamics with respect to clonal expansion, clonal diversity, and repertoire architecture. Comparing MS TCR sequences with published datasets suggested that the majority of public TCRs belonged to virus-associated sequences. In summary, applying multidimensional computational immunology to a TCRβ dataset of treated MS patients, we show that qualitative changes of TCRβ repertoires encode treatment-specific information that may be relevant for future clinical trials monitoring and personalized MS follow-up, diagnosis, and treatment regimens
    • …
    corecore