2,361 research outputs found
Selective Constraints on Amino Acids Estimated by a Mechanistic Codon Substitution Model with Multiple Nucleotide Changes
Empirical substitution matrices represent the average tendencies of
substitutions over various protein families by sacrificing gene-level
resolution. We develop a codon-based model, in which mutational tendencies of
codon, a genetic code, and the strength of selective constraints against amino
acid replacements can be tailored to a given gene. First, selective constraints
averaged over proteins are estimated by maximizing the likelihood of each 1-PAM
matrix of empirical amino acid (JTT, WAG, and LG) and codon (KHG) substitution
matrices. Then, selective constraints specific to given proteins are
approximated as a linear function of those estimated from the empirical
substitution matrices.
Akaike information criterion (AIC) values indicate that a model allowing
multiple nucleotide changes fits the empirical substitution matrices
significantly better. Also, the ML estimates of transition-transversion bias
obtained from these empirical matrices are not so large as previously
estimated. The selective constraints are characteristic of proteins rather than
species. However, their relative strengths among amino acid pairs can be
approximated not to depend very much on protein families but amino acid pairs,
because the present model, in which selective constraints are approximated to
be a linear function of those estimated from the JTT/WAG/LG/KHG matrices, can
provide a good fit to other empirical substitution matrices including cpREV for
chloroplast proteins and mtREV for vertebrate mitochondrial proteins.
The present codon-based model with the ML estimates of selective constraints
and with adjustable mutation rates of nucleotide would be useful as a simple
substitution model in ML and Bayesian inferences of molecular phylogenetic
trees, and enables us to obtain biologically meaningful information at both
nucleotide and amino acid levels from codon and protein sequences.Comment: Table 9 in this article includes corrections for errata in the Table
9 published in 10.1371/journal.pone.0017244. Supporting information is
attached at the end of the article, and a computer-readable dataset of the ML
estimates of selective constraints is available from
10.1371/journal.pone.001724
Including metabolite concentrations into flux balance analysis: thermodynamic realizability as a constraint on flux distributions in metabolic networks
<p>Abstract</p> <p>Background</p> <p>In recent years, constrained optimization – usually referred to as flux balance analysis (FBA) – has become a widely applied method for the computation of stationary fluxes in large-scale metabolic networks. The striking advantage of FBA as compared to kinetic modeling is that it basically requires only knowledge of the stoichiometry of the network. On the other hand, results of FBA are to a large degree hypothetical because the method relies on plausible but hardly provable optimality principles that are thought to govern metabolic flux distributions.</p> <p>Results</p> <p>To augment the reliability of FBA-based flux calculations we propose an additional side constraint which assures thermodynamic realizability, i.e. that the flux directions are consistent with the corresponding changes of Gibb's free energies. The latter depend on metabolite levels for which plausible ranges can be inferred from experimental data. Computationally, our method results in the solution of a mixed integer linear optimization problem with quadratic scoring function. An optimal flux distribution together with a metabolite profile is determined which assures thermodynamic realizability with minimal deviations of metabolite levels from their expected values. We applied our novel approach to two exemplary metabolic networks of different complexity, the metabolic core network of erythrocytes (30 reactions) and the metabolic network iJR904 of <it>Escherichia coli </it>(931 reactions). Our calculations show that increasing network complexity entails increasing sensitivity of predicted flux distributions to variations of standard Gibb's free energy changes and metabolite concentration ranges. We demonstrate the usefulness of our method for assessing critical concentrations of external metabolites preventing attainment of a metabolic steady state.</p> <p>Conclusion</p> <p>Our method incorporates the thermodynamic link between flux directions and metabolite concentrations into a practical computational algorithm. The weakness of conventional FBA to rely on intuitive assumptions about the reversibility of biochemical reactions is overcome. This enables the computation of reliable flux distributions even under extreme conditions of the network (e.g. enzyme inhibition, depletion of substrates or accumulation of end products) where metabolite concentrations may be drastically altered.</p
Variability of Bio-Clinical Parameters in Chinese-Origin Rhesus Macaques Infected with Simian Immunodeficiency Virus: A Nonhuman Primate AIDS Model
BACKGROUND: Although Chinese-origin Rhesus macaques (Ch RhMs) infected with simian immunodeficiency virus (SIV) have been used for many years to evaluate the efficacy of AIDS vaccines and therapeutics, the bio-clinical variability of such a nonhuman primate AIDS model was so far not established. METHODOLOGY/PRINCIPAL FINDINGS: By randomizing 150 (78 male and 72 female) Ch RhMs with diverse MHC class I alleles into 3 groups (50 animals per group) challenged with intrarectal (i.r.) SIVmac239, intravenous (i.v.) SIVmac239, or i.v. SIVmac251, we evaluated variability in bio-clinical endpoints for 118 weeks. All SIV-challenged Ch RhMs became seropositive for SIV during 1-2 weeks. Plasma viral load (VL) peaked at weeks 1-2 and then declined to set-point levels as from week 5. The set-point VL was 30 fold higher in SIVmac239 (i.r. or i.v.)-infected than in SIVmac251 (i.v.)-infected animals. This difference in plasma VL increased overtime (>100 fold as from week 68). The rates of progression to AIDS or death were more rapid in SIVmac239 (i.r. or i.v.)-infected than in SIVmac251 (i.v.)-infected animals. No significant difference in bio-clinical endpoints was observed in animals challenged with i.r. or i.v. SIVmac239. The variability (standard deviation) in peak/set-point VL was nearly one-half lower in animals infected with SIVmac239 (i.r. or i.v.) than in those infected with SIVmac251 (i.v.), allowing that the same treatment-related difference can be detected with one-half fewer animals using SIVmac239 than using SIVmac251. CONCLUSION/SIGNIFICANCE: These results provide solid estimates of variability in bio-clinical endpoints needed when designing studies using the Ch RhM SIV model and contribute to the improving quality and standardization of preclinical studies
A randomized controlled trial of tai chi for long-term low back pain (TAI CHI): Study rationale, design, and methods
<p>Abstract</p> <p>Background</p> <p>Low back pain persisting for longer than 3 months is a common and costly condition for which many current treatments have low-moderate success rates at best. Exercise is among the more successful treatments for this condition, however, the type and dosage of exercise that elicits the best results is not clearly defined. Tai chi is a gentle form of low intensity exercise that uses controlled movements in combination with relaxation techniques and is currently used as a safe form of exercise for people suffering from other chronic pain conditions such as arthritis. To date, there has been no scientific evaluation of tai chi as an intervention for people with back pain. Thus the aim of this study will be to examine the effects of a tai chi exercise program on pain and disability in people with long-term low back pain.</p> <p>Methods and design</p> <p>The study will recruit 160 healthy individuals from the community setting to be randomised to either a tai chi intervention group or a wait-list control group. Individuals in the tai chi group will attend 2 tai chi sessions (40 minutes)/week for 8 weeks followed by 1 tai chi session/week for 2 weeks. The wait-list control will continue their usual health care practices and have the opportunity to participate in the tai chi program once they have completed the follow-up assessments. The primary outcome will be bothersomeness of back symptoms measured with a 0–10 numerical rating scale. Secondary outcomes include, self-reports of pain-related disability, health-related quality of life and global perceived effect of treatment. Statistical analysis of primary and secondary outcomes will be based on the intention to treat principle. Linear mixed models will be used to test for the effect of treatment on outcome at 10 weeks follow up. This trial has received ethics approval from The University of Sydney Human Research Ethics Committee. HREC Approval No.10452</p> <p>Discussion</p> <p>This study will be the first trial in this area and the information on its effectiveness will allow patients, clinicians and treatment funders to make informed choices regarding this treatment.</p> <p>Trial Registration</p> <p>This trial has been registered with Australian New Zealand Clinical Trials Registry. <b>ACTRN12608000270314</b></p
Tear fluid biomarkers in ocular and systemic disease: potential use for predictive, preventive and personalised medicine
In the field of predictive, preventive and personalised medicine, researchers are keen to identify novel and reliable ways to predict and diagnose disease, as well as to monitor patient response to therapeutic agents. In the last decade alone, the sensitivity of profiling technologies has undergone huge improvements in detection sensitivity, thus allowing quantification of minute samples, for example body fluids that were previously difficult to assay. As a consequence, there has been a huge increase in tear fluid investigation, predominantly in the field of ocular surface disease. As tears are a more accessible and less complex body fluid (than serum or plasma) and sampling is much less invasive, research is starting to focus on how disease processes affect the proteomic, lipidomic and metabolomic composition of the tear film. By determining compositional changes to tear profiles, crucial pathways in disease progression may be identified, allowing for more predictive and personalised therapy of the individual. This article will provide an overview of the various putative tear fluid biomarkers that have been identified to date, ranging from ocular surface disease and retinopathies to cancer and multiple sclerosis. Putative tear fluid biomarkers of ocular disorders, as well as the more recent field of systemic disease biomarkers, will be shown
Timing the initiation of multiple myeloma
The evolution and progression of multiple myeloma and its precursors over time is poorly understood. Here, we investigate the landscape and timing of mutational processes shaping multiple myeloma evolution in a large cohort of 89 whole genomes and 973 exomes. We identify eight processes, including a mutational signature caused by exposure to melphalan. Reconstructing the chronological activity of each mutational signature, we estimate that the initial transformation of a germinal center B-cell usually occurred during the first 2nd-3rd decades of life. We define four main patterns of activation-induced deaminase (AID) and apolipoprotein B mRNA editing catalytic polypeptide-like (APOBEC) mutagenesis over time, including a subset of patients with evidence of prolonged AID activity during the pre-malignant phase, indicating antigen-responsiveness and germinal center reentry. Our findings provide a framework to study the etiology of multiple myeloma and explore strategies for prevention and early detection
- …