5,163 research outputs found

    Self-assembled dynamic perovskite composite cathodes for intermediate temperature solid oxide fuel cells

    Get PDF
    Electrode materials for intermediate temperature (500–700 ∘C) solid oxide fuel cells require electrical and mechanical stability to maintain performance during the cell lifetime. This has proven difficult to achieve for many candidate cathode materials and their derivatives with good transport and electrocatalytic properties because of reactivity towards cell components, and the fuels and oxidants. Here we present Ba0.5Sr0.5(Co0.7Fe0.3)0.6875W0.3125O3−δ (BSCFW), a self-assembled composite prepared through simple solid state synthesis, consisting of B-site cation ordered double perovskite and disordered single perovskite oxide phases, as a candidate cathode material. These phases interact by dynamic compositional change at the operating temperature, promoting both chemical stability through the increased amount of W in the catalytically active single perovskite provided from the W-reservoir double perovskite, and microstructural stability through reduced sintering of the supported catalytically active phase. This interactive catalyst-support system enabled stable high electrochemical activity through the synergic integration of the distinct properties of the two phases

    The Role of Medical Education in Reducing Health Care Disparities: The First Ten Years of the UCLA/Drew Medical Education Program

    Get PDF
    BACKGROUND: The University of California, Los Angeles (UCLA)/Charles R. Drew University Medical Education Program was developed to train physicians for practice in underserved areas. The UCLA/Drew Medical Education Program students receive basic science instruction at UCLA and complete their required clinical rotations in South Los Angeles, an impoverished urban community. We have previously shown that, in comparison to their UCLA counterparts, students in the Drew program had greater odds of maintaining their commitment to medically disadvantaged populations over the course of medical education. OBJECTIVE: To examine the independent association of graduation from the UCLA/Drew program with subsequent choice of physician practice location. We hypothesized that participation in the UCLA/Drew program predicts future practice in medically disadvantaged areas, controlling for student demographics such as race/ethnicity and gender, indicators of socioeconomic status, and specialty choice. DESIGN: Retrospective cohort study. PARTICIPANTS: Graduates (1,071) of the UCLA School of Medicine and the UCLA/Drew Medical Education Program from 1985–1995, practicing in California in 2003 based on the address listed in the American Medical Association (AMA) Physician Masterfile. MEASUREMENTS: Physician address was geocoded to a California Medical Service Study Area (MSSA). A medically disadvantaged community was defined as meeting any one of the following criteria: (a) federally designated HPSA or MUA; (b) rural area; (c) high minority area; or (d) high poverty area. RESULTS: Fifty-three percent of UCLA/Drew graduates are located in medically disadvantaged areas, in contrast to 26.1% of UCLA graduates. In multivariate analyses, underrepresented minority race/ethnicity (OR: 1.57; 95% CI: 1.10–2.25) and participation in the Drew program (OR: 2.47; 95% CI: 1.59–3.83) were independent predictors of future practice in disadvantaged areas. CONCLUSIONS: Physicians who graduated from the UCLA/Drew Medical Education Program have higher odds of practicing in underserved areas than those who completed the traditional UCLA curriculum, even after controlling for other factors such as race/ethnicity. The association between participation in the UCLA/Drew Medical Education Program and physician practice location suggests that medical education programs may reinforce student goals to practice in disadvantaged communities

    Inactivation of Poxviruses by Upper-Room UVC Light in a Simulated Hospital Room Environment

    Get PDF
    In the event of a smallpox outbreak due to bioterrorism, delays in vaccination programs may lead to significant secondary transmission. In the early phases of such an outbreak, transmission of smallpox will take place especially in locations where infected persons may congregate, such as hospital emergency rooms. Air disinfection using upper-room 254 nm (UVC) light can lower the airborne concentrations of infective viruses in the lower part of the room, and thereby control the spread of airborne infections among room occupants without exposing occupants to a significant amount of UVC. Using vaccinia virus aerosols as a surrogate for smallpox we report on the effectiveness of air disinfection, via upper-room UVC light, under simulated real world conditions including the effects of convection, mechanical mixing, temperature and relative humidity. In decay experiments, upper-room UVC fixtures used with mixing by a conventional ceiling fan produced decreases in airborne virus concentrations that would require additional ventilation of more than 87 air changes per hour. Under steady state conditions the effective air changes per hour associated with upper-room UVC ranged from 18 to 1000. The surprisingly high end of the observed range resulted from the extreme susceptibility of vaccinia virus to UVC at low relative humidity and use of 4 UVC fixtures in a small room with efficient air mixing. Increasing the number of UVC fixtures or mechanical ventilation rates resulted in greater fractional reduction in virus aerosol and UVC effectiveness was higher in winter compared to summer for each scenario tested. These data demonstrate that upper-room UVC has the potential to greatly reduce exposure to susceptible viral aerosols. The greater survival at baseline and greater UVC susceptibility of vaccinia under winter conditions suggest that while risk from an aerosol attack with smallpox would be greatest in winter, protective measures using UVC may also be most efficient at this time. These data may also be relevant to influenza, which also has improved aerosol survival at low RH and somewhat similar sensitivity to UVC

    Loss of epigenetic regulator TET2 and oncogenic KIT regulate myeloid cell transformation via PI3K pathway

    Get PDF
    Mutations in KIT and TET2 are associated with myeloid malignancies. We show that loss of TET2-induced PI3K activation and -increased proliferation is rescued by targeting the p110α/δ subunits of PI3K. RNA-Seq revealed a hyperactive c-Myc signature in Tet2-/- cells, which is normalized by inhibiting PI3K signaling. Loss of TET2 impairs the maturation of myeloid lineage-derived mast cells by dysregulating the expression of Mitf and Cebpa, which is restored by low-dose ascorbic acid and 5-azacytidine. Utilizing a mouse model in which the loss of TET2 precedes the expression of oncogenic Kit, similar to the human disease, results in the development of a non-mast cell lineage neoplasm (AHNMD), which is responsive to PI3K inhibition. Thus, therapeutic approaches involving hypomethylating agents, ascorbic acid, and isoform-specific PI3K inhibitors are likely to be useful for treating patients with TET2 and KIT mutations

    Probing Nucleation Mechanism of Self-Catalyzed InN Nanostructures

    Get PDF
    The nucleation and evolution of InN nanowires in a self-catalyzed growth process have been investigated to probe the microscopic growth mechanism of the self-catalysis and a model is proposed for high pressure growth window at ~760 Torr. In the initial stage of the growth, amorphous InNx microparticles of cone shape in liquid phase form with assistance of an InNx wetting layer on the substrate. InN crystallites form inside the cone and serve as the seeds for one-dimensional growth along the favorable [0001] orientation, resulting in single-crystalline InN nanowire bundles protruding out from the cones. An amorphous InNx sheath around the faucet tip serves as the interface between growing InN nanowires and the incoming vapors of indium and nitrogen and supports continuous growth of InN nanowires in a similar way to the oxide sheath in the oxide-assisted growth of other semiconductor nanowires. Other InN 1D nanostructures, such as belts and tubes, can be obtained by varying the InN crystallites nucleation and initiation process

    Biofilter aquaponic system for nutrients removal from fresh market wastewater

    Get PDF
    Aquaponics is a significant wastewater treatment system which refers to the combination of conventional aquaculture (raising aquatic organism) with hydroponics (cultivating plants in water) in a symbiotic environment. This system has a high ability in removing nutrients compared to conventional methods because it is a natural and environmentally friendly system (aquaponics). The current chapter aimed to review the possible application of aquaponics system to treat fresh market wastewater with the intention to highlight the mechanism of phytoremediation occurs in aquaponic system. The literature revealed that aquaponic system was able to remove nutrients in terms of nitrogen and phosphorus

    Long COVID in children and young after infection or reinfection with the Omicron variant: a prospective observational study

    Get PDF
    To describe the prevalence of long COVID in children infected for the first time (n = 332) or reinfected (n = 243) with Omicron compared with test-negative children (n = 311). Overall, 12%-16% of those infected with Omicron met the research definition of long COVID at 3 and 6 months after infection, with no evidence of difference between cases of first positive and reinfected (Pχ2 = 0.17)

    Moderate exercise and chronic stress produce counteractive effects on different areas of the brain by acting through various neurotransmitter receptor subtypes: A hypothesis

    Get PDF
    BACKGROUND: Regular, "moderate", physical exercise is an established non-pharmacological form of treatment for depressive disorders. Brain lateralization has a significant role in the progress of depression. External stimuli such as various stressors or exercise influence the higher functions of the brain (cognition and affect). These effects often do not follow a linear course. Therefore, nonlinear dynamics seem best suited for modeling many of the phenomena, and putative global pathways in the brain, attributable to such external influences. HYPOTHESIS: The general hypothesis presented here considers only the nonlinear aspects of the effects produced by "moderate" exercise and "chronic" stressors, but does not preclude the possibility of linear responses. In reality, both linear and nonlinear mechanisms may be involved in the final outcomes. The well-known neurotransmitters serotonin (5-HT), dopamine (D) and norepinephrine (NE) all have various receptor subtypes. The article hypothesizes that 'Stress' increases the activity/concentration of some particular subtypes of receptors (designated nt(s)) for each of the known (and unknown) neurotransmitters in the right anterior (RA) and left posterior (LP) regions (cortical and subcortical) of the brain, and has the converse effects on a different set of receptor subtypes (designated nt(h)). In contrast, 'Exercise' increases nt(h )activity/concentration and/or reduces nt(s )activity/concentration in the LA and RP areas of the brain. These effects may be initiated by the activation of Brain Derived Neurotrophic Factor (BDNF) (among others) in exercise and its suppression in stress. CONCLUSION: On the basis of this hypothesis, a better understanding of brain neurodynamics might be achieved by considering the oscillations caused by single neurotransmitters acting on their different receptor subtypes, and the temporal pattern of recruitment of these subtypes. Further, appropriately designed and planned experiments will not only corroborate such theoretical models, but also shed more light on the underlying brain dynamics

    Neutron Electric Dipole Moment Constraint on Scale of Minimal Left-Right Symmetric Model

    Full text link
    Using an effective theory approach, we calculate the neutron electric dipole moment (nEDM) in the minimal left-right symmetric model with both explicit and spontaneous CP violations. We integrate out heavy particles to obtain flavor-neutral CP-violating effective Lagrangian. We run the Wilson coefficients from the electroweak scale to the hadronic scale using one-loop renormalization group equations. Using the state-of-the-art hadronic matrix elements, we obtain the nEDM as a function of right-handed W-boson mass and CP-violating parameters. We use the current limit on nEDM combined with the kaon-decay parameter ϵ\epsilon to provide the most stringent constraint yet on the left-right symmetric scale MWR>(10±3) M_{W_R} > (10 \pm 3) TeV.Comment: 20 pages and 8 figure
    corecore