47 research outputs found
Genome-Wide Survey and Expression Profiling of CCCH-Zinc Finger Family Reveals a Functional Module in Macrophage Activation
Previously, we have identified a novel CCCH zinc finger protein family as negative regulators of macrophage activation. To gain an overall insight into the entire CCCH zinc finger gene family and to evaluate their potential role in macrophage activation, here we performed a genome-wide survey of CCCH zinc finger genes in mouse and human. Totally 58 CCCH zinc finger genes in mouse and 55 in human were identified and most of them have not been reported previously. Phylogenetic analysis revealed that the mouse CCCH family was divided into 6 groups. Meanwhile, we employed quantitative real-time PCR to profile their tissue expression patterns in adult mice. Clustering analysis showed that most of CCCH genes were broadly expressed in all of tissues examined with various levels. Interestingly, several CCCH genes Mbnl3, Zfp36l2, Zfp36, Zc3h12a, Zc3h12d, Zc3h7a and Leng9 were enriched in macrophage-related organs such as thymus, spleen, lung, intestine and adipose. Consistently, a comprehensive assessment of changes in expression of the 58 members of the mouse CCCH family during macrophage activation also revealed that these CCCH zinc finger genes were associated with the activation of bone marrow-derived macrophages by lipopolysaccharide. Taken together, this study not only identified a functional module of CCCH zinc finger genes in the regulation of macrophage activation but also provided the framework for future studies to dissect the function of this emerging gene family
A Polyadenylation Factor Subunit Implicated in Regulating Oxidative Signaling in Arabidopsis thaliana
BACKGROUND: Plants respond to many unfavorable environmental conditions via signaling mediated by altered levels of various reactive oxygen species (ROS). To gain additional insight into oxidative signaling responses, Arabidopsis mutants that exhibited tolerance to oxidative stress were isolated. We describe herein the isolation and characterization of one such mutant, oxt6. METHODOLOGY/PRINCIPAL FINDINGS: The oxt6 mutation is due to the disruption of a complex gene (At1g30460) that encodes the Arabidopsis ortholog of the 30-kD subunit of the cleavage and polyadenylation specificity factor (CPSF30) as well as a larger, related 65-kD protein. Expression of mRNAs encoding Arabidopsis CPSF30 alone was able to restore wild-type growth and stress susceptibility to the oxt6 mutant. Transcriptional profiling and single gene expression studies show elevated constitutive expression of a subset of genes that encode proteins containing thioredoxin- and glutaredoxin-related domains in the oxt6 mutant, suggesting that stress can be ameliorated by these gene classes. Bulk poly(A) tail length was not seemingly affected in the oxt6 mutant, but poly(A) site selection was different, indicating a subtle effect on polyadenylation in the mutant. CONCLUSIONS/SIGNIFICANCE: These results implicate the Arabidopsis CPSF30 protein in the posttranscriptional control of the responses of plants to stress, and in particular to the expression of a set of genes that suffices to confer tolerance to oxidative stress
Analysis of opo cis-regulatory landscape uncovers Vsx2 requirement in early eye morphogenesis
The self-organized morphogenesis of the vertebrate optic cup entails coupling the activation of the retinal gene regulatory network to the constriction-driven infolding of the retinal epithelium. Yet the genetic mechanisms underlying this coordination remain largely unexplored. Through phylogenetic footprinting and transgenesis in zebrafish, here we examine the cis-regulatory landscape of opo, an endocytosis regulator essential for eye morphogenesis. Among the different conserved enhancers identified, we isolate a single retina-specific element (H6_10137) and show that its activity depends on binding sites for the retinal determinant Vsx2. Gain- and loss-of-function experiments and ChIP analyses reveal that Vsx2 regulates opo expression through direct binding to this retinal enhancer. Furthermore, we show that vsx2 knockdown impairs the primary optic cup folding. These data support a model by which vsx2, operating through the effector gene opo, acts as a central transcriptional node that coordinates neural retina patterning and optic cup invagination in zebrafish.info:eu-repo/semantics/publishedVersio
RNA metabolism is the primary target of formamide in vivo
The synthesis, processing and function of coding and non-coding RNA molecules and their interacting proteins has been the focus of a great deal of research that has boosted our understanding of key molecular pathways that underlie higher order events such as cell cycle control, development, innate immune response and the occurrence of genetic diseases. In this study, we have found that formamide preferentially weakens RNA related processes in vivo. Using a non-essential Schizosaccharomyces pombe gene deletion collection, we identify deleted loci that make cells sensitive to formamide. Sensitive deletions are significantly enriched in genes involved in RNA metabolism. Accordingly, we find that previously known temperature-sensitive splicing mutants become lethal in the presence of the drug under permissive temperature. Furthermore, in a wild type background, splicing efficiency is decreased and R-loop formation is increased in the presence of formamide. In addition, we have also isolated 35 formamide-sensitive mutants, many of which display remarkable morphology and cell cycle defects potentially unveiling new players in the regulation of these processes. We conclude that formamide preferentially targets RNA related processes in vivo, probably by relaxing RNA secondary structures and/or RNA-protein interactions, and can be used as an effective tool to characterize these processes
Subnuclear localization and dynamics of the Pre-mRNA 3' end processing factor mammalian cleavage factor I 68-kDa subunit.
Mammalian cleavage factor I (CF Im) is an essential factor that is required for the first step in pre-mRNA 3 end processing.Here, we characterize CF Im68 subnuclear distribution and mobility. Fluorescence microscopy reveals that in addition toparaspeckles CF Im68 accumulates in structures that partially overlap with nuclear speckles. Analysis of synchronizedcells shows that CF Im68 distribution in speckles and paraspeckles varies during the cell cycle. At an ultrastructural level,CF Im68 is associated with perichromatin fibrils, the sites of active transcription, and concentrates in interchromatingranules-associated zones. We show that CFIm68 colocalizes with bromouridine, RNA polymerase II, and the splicingfactor SC35. On inhibition of transcription, endogenous CF Im68 no longer associates with perichromatin fibrils, but it canstill be detected in interchromatin granules-associated zones. These observations support the idea that not only splicingbut also 3 end processing occurs cotranscriptionally. Finally, fluorescence recovery after photobleaching analysis revealsthat the CF Im68 fraction associated with paraspeckles moves at a rate similar to the more dispersed molecules in thenucleoplasm, demonstrating the dynamic nature of this compartment. These findings suggest that paraspeckles are afunctional compartment involved in RNA metabolism in the cell nucleus
Isolation and Accumulation of Spliceosomal Assembly Intermediates
Isolating spliceosomes at a specific assembly stage requires a means to stall or enrich for one of the intermediate splicing complexes. We describe strategies to arrest spliceosomes at different points of complex formation and provide a detailed protocol developed for isolating intact splicing complexes arrested between the first and second chemical steps of splicing. Briefly, spliceosomes are assembled on a radiolabeled in vitro-transcribed splicing substrate from components present in nuclear extract of HeLa cells. Spliceosome progression is arrested after the first step of splicing chemistry by mutating the pre-mRNA substrate at the 3′ splice site. The substrate also contains binding sites for the MS2 protein, which serve as an affinity tag. Purification of arrested spliceosomes is carried out in two steps: (1) size exclusion chromatography and (2) affinity selection via a fusion of MS2 and maltose-binding protein (MBP). Complex assembly and purification are analyzed by denaturing polyacrylamide gel electrophoresis. © 2014 Springer Science+Business Media, LLC
A U1-U2 snRNP Interaction Network during Intron Definition
The assembly of prespliceosomes is responsible for selection of intron sites for splicing. U1 and U2 snRNPs recognize 5′ splice sites and branch sites, respectively; although there is information regarding the composition of these complexes, little is known about interaction among the components or between the two snRNPs. Here we describe the protein network of interactions linking U1 and U2 snRNPs with the ATPase Prp5, important for branch site recognition and fidelity during the first steps of the reaction, using fission yeast Schizosaccharomyces pombe. The U1 snRNP core protein U1A binds to a novel SR-like protein, Rsd1, which has homologs implicated in transcription. Rsd1 also contacts S. pombe Prp5 (SpPrp5), mediated by SR-like domains in both proteins. SpPrp5 then contacts U2 snRNP through SF3b, mediated by a conserved DPLD motif in Prp5. We show that mutations in this motif have consequences not only in vitro (defects in prespliceosome formation) but also in vivo, yielding intron retention and exon skipping defects in fission yeast and altered intron recognition in budding yeast Saccharomyces cerevisiae, indicating that the U1-U2 network provides critical, evolutionarily conserved contacts during intron definition