17 research outputs found

    Fine-Scale Bacterial Beta Diversity within a Complex Ecosystem (Zodletone Spring, OK, USA): The Role of the Rare Biosphere

    Get PDF
    The adaptation of pyrosequencing technologies for use in culture-independent diversity surveys allowed for deeper sampling of ecosystems of interest. One extremely well suited area of interest for pyrosequencing-based diversity surveys that has received surprisingly little attention so far, is examining fine scale (e.g. micrometer to millimeter) beta diversity in complex microbial ecosystems.We examined the patterns of fine scale Beta diversity in four adjacent sediment samples (1mm apart) from the source of an anaerobic sulfide and sulfur rich spring (Zodletone spring) in southwestern Oklahoma, USA. Using pyrosequencing, a total of 292,130 16S rRNA gene sequences were obtained. The beta diversity patterns within the four datasets were examined using various qualitative and quantitative similarity indices. Low levels of Beta diversity (high similarity indices) were observed between the four samples at the phylum-level. However, at a putative species (OTU(0.03)) level, higher levels of beta diversity (lower similarity indices) were observed. Further examination of beta diversity patterns within dominant and rare members of the community indicated that at the putative species level, beta diversity is much higher within rare members of the community. Finally, sub-classification of rare members of Zodletone spring community based on patterns of novelty and uniqueness, and further examination of fine scale beta diversity of each of these subgroups indicated that members of the community that are unique, but non novel showed the highest beta diversity within these subgroups of the rare biosphere.The results demonstrate the occurrence of high inter-sample diversity within seemingly identical samples from a complex habitat. We reason that such unexpected diversity should be taken into consideration when exploring gamma diversity of various ecosystems, as well as planning for sequencing-intensive metagenomic surveys of highly complex ecosystems

    Benthic pH gradients across a range of shelf sea sediment types linked to sediment characteristics and seasonal variability

    Get PDF
    This study used microelectrodes to record pH profiles in fresh shelf sea sediment cores collected across a range of different sediment types within the Celtic Sea. Spatial and temporal variability was captured during repeated measurements in 2014 and 2015. Concurrently recorded oxygen microelectrode profiles and other sedimentary parameters provide a detailed context for interpretation of the pH data. Clear differences in profiles were observed between sediment type, location and season. Notably, very steep pH gradients exist within the surface sediments (10–20 mm), where decreases greater than 0.5 pH units were observed. Steep gradients were particularly apparent in fine cohesive sediments, less so in permeable sandier matrices. We hypothesise that the gradients are likely caused by aerobic organic matter respiration close to the sediment–water interface or oxidation of reduced species at the base of the oxic zone (NH4+, Mn2+, Fe2+, S−). Statistical analysis suggests the variability in the depth of the pH minima is controlled spatially by the oxygen penetration depth, and seasonally by the input and remineralisation of deposited organic phytodetritus. Below the pH minima the observed pH remained consistently low to maximum electrode penetration (ca. 60 mm), indicating an absence of sub-oxic processes generating H+ or balanced removal processes within this layer. Thus, a climatology of sediment surface porewater pH is provided against which to examine biogeochemical processes. This enhances our understanding of benthic pH processes, particularly in the context of human impacts, seabed integrity, and future climate changes, providing vital information for modelling benthic response under future climate scenarios

    Resource Quantity Affects Benthic Microbial Community Structure and Growth Efficiency in a Temperate Intertidal Mudflat

    Get PDF
    Estuaries cover <1% of marine habitats, but the carbon dioxide (CO2) effluxes from these net heterotrophic systems contribute significantly to the global carbon cycle. Anthropogenic eutrophication of estuarine waterways increases the supply of labile substrates to the underlying sediments. How such changes affect the form and functioning of the resident microbial communities remains unclear. We employed a carbon-13 pulse-chase experiment to investigate how a temperate estuarine benthic microbial community at 6.5°C responded to additions of marine diatom-derived organic carbon equivalent to 4.16, 41.60 and 416.00 mmol C m−2. The quantities of carbon mineralized and incorporated into bacterial biomass both increased significantly, albeit differentially, with resource supply. This resulted in bacterial growth efficiency increasing from 0.40±0.02 to 0.55±0.04 as substrates became more available. The proportions of diatom-derived carbon incorporated into individual microbial membrane fatty acids also varied with resource supply. Future increases in labile organic substrate supply have the potential to increase both the proportion of organic carbon being retained within the benthic compartment of estuaries and also the absolute quantity of CO2 outgassing from these environments

    Microbial diversity in waters, sediments and microbial mats evaluated using fatty acid-based methods

    Get PDF
    The review summarises recent advances towards a greater comprehensive assessment of microbial diversity in aquatic environments using the fatty acid methyl esters and phospholipid fatty acids approaches. These methods are commonly used in microbial ecology because they do not require the culturing of micro-organisms, are quantitative and reproducible and provide valuable information regarding the structure of entire microbial communities. Because some fatty acids are associated with taxonomic and functional groups of micro-organisms, they allow particular groups of micro-organisms to be distinguished. The integration of fatty acid-based methods with stable isotopes, RNA and DNA analyses enhances our knowledge of the role of micro-organisms in global nutrient cycles, functional activity and phylogenetic lineages within microbial communities. Additionally, the analysis of fatty acid profiles enables the shifts in the microbial diversity in pristine and contaminated environments to be monitored. The main objective of this review is to present the use of lipid-based approaches for the characterisation of microbial communities in water columns, sediments and biomats

    Response of benthic microbial communities to chitin enrichment: an in situ study in the deep Arctic Ocean

    Get PDF
    In situ enrichment experiments were carried out in the Arctic deep sea (Fram Strait region) to observe the response of benthic microbial communities to chitin supply. Chambers of a benthic lander were filled in July 2004 with deep-sea sediments enriched with 1.3–7.0 g m−2 of chitin and the effects of chitin enrichment were assessed on the microbial hydrolytic activity potential, cell number and community structure after periods of 1 week and 1 year of in situ deployment. The input of chitin had no effect on microbial abundance and chitobiase activity after 7 days of incubation, whereas community structure in enriched sediments, determined by terminal restriction fragment length polymorphism analysis of 16S rRNA genes, was different from the controls. After 1 year, microbial numbers and activity significantly increased in sediments enriched with high chitin concentrations and bacterial community structure was different from that of the other treatments. The present study suggests that microbial community structure in Arctic deep-sea sediments can react quickly to sudden large chitin inputs into the sediments and that this appears to precondition subsequent enhanced growth and enzymatic activity changes
    corecore