7,962 research outputs found

    Probable detection of starlight reflected from the giant exoplanet orbiting tau Bootis

    Full text link
    Giant planets orbiting stars other than the Sun are clearly detectable through precise radial-velocity measurements of the orbital reflex motion of the parent star. In the four years since the discovery of the companion to the star 51 Peg, similar low-amplitude ``Doppler star wobbles'' have revealed the presence of some 20 planets orbiting nearby solar-type stars. Several of these newly-discovered planets are very close to their parent stars, in orbits with periods of only a few days. Being an indirect technique, however, the reflex-velocity method has little to say about the sizes or compositions of the planets, and can only place lower limits on their masses. Here we report the use of high-resolution optical spectroscopy to achieve a probable detection of the Doppler-shifted signature of starlight reflected from one of these objects, the giant exoplanet orbiting the star tau Bootis. Our data give the planet's orbital inclination i=29 degrees, indicating that its mass is some 8 times that of Jupiter, and suggest strongly that the planet has the size and reflectivity expected for a gas-giant planet.Comment: 15 pages, 4 figures. (Fig 1 and equation for epsilon on p1 para 2 revised; changed from double to single spacing

    Community motivations to engage in conservation behaviour to conserve the Sumatran orangutan

    Get PDF
    Community-based conservation programs in developing countries often assume that heteronomous motivation (e.g. extrinsic incentives such as economic rewards and pressure or coercion to act) will motivate local communities to adopt conservation behaviors. However, this may not be as effective or sustainable as autonomous motivations (e.g. an intrinsic desire to act due to inherent enjoyment or self-identification with a behavior and through freedom of choice). This paper analyses the comparative effectiveness of heteronomous versus autonomous approaches to community-based conservation programs, using the example of Sumatran orangutan (Pongo abelii) conservation in Indonesia. Comparing three case study villages employing differing program designs, we found that heteronomous motivations (e.g. income from tourism) led to a change in self-reported behavior towards orangutan protection. However, they were ineffective in changing self reported behavior towards forest (i.e. orangutan habitat) protection. The most effective approach to creating self-reported behavior change throughout the community was with a combination of autonomous and heteronomous motivations. Individuals who were heteronomously motivated to protect the orangutan were found to be more likely to have changed attitudes than their self-reported behavior. These findings demonstrate that the current paradigm of motivating communities in developing countries to adopt conservation behaviors primarily through monetary incentives and rewards should also consider integrating autonomous motivational techniques which promote the intrinsic values of conservation. Such a combination will have a greater potential to achieve sustainable and cost-effective conservation outcomes. Our results highlight the importance of in-depth socio psychological analyses to assist the design and implementation of community-based conservation programs

    Quantifying the Detrimental Impacts of Land-Use and Management Change on European Forest Bird Populations

    Get PDF
    The ecological impacts of changing forest management practices in Europe are poorly understood despite European forests being highly managed. Furthermore, the effects of potential drivers of forest biodiversity decline are rarely considered in concert, thus limiting effective conservation or sustainable forest management. We present a trait-based framework that we use to assess the detrimental impact of multiple land-use and management changes in forests on bird populations across Europe. Major changes to forest habitats occurring in recent decades, and their impact on resource availability for birds were identified. Risk associated with these changes for 52 species of forest birds, defined as the proportion of each species' key resources detrimentally affected through changes in abundance and/or availability, was quantified and compared to their pan-European population growth rates between 1980 and 2009. Relationships between risk and population growth were found to be significantly negative, indicating that resource loss in European forests is an important driver of decline for both resident and migrant birds. Our results demonstrate that coarse quantification of resource use and ecological change can be valuable in understanding causes of biodiversity decline, and thus in informing conservation strategy and policy. Such an approach has good potential to be extended for predictive use in assessing the impact of possible future changes to forest management and to develop more precise indicators of forest health

    Oscillations of aqueous PEDOT:PSS fluid droplets and the properties of complex fluids in drop-on-demand inkjet printing

    Get PDF
    Shear-thinning aqueous poly(3,4-ethylenedioxythiophene): poly(styrene sulphonate) (PEDOT:PSS) fluids were studied under the conditions of drop-on-demand inkjet printing. Ligament retraction caused oscillation of the resulting drops, from which values of surface tension and viscosity were derived. Effective viscosities of <4 mPa s at drop oscillation frequencies of 13–33 kHz were consistent with conventional high-frequency rheometry, with only a small possible contribution from viscoelasticity with a relaxation time of about 6 μs. Strong evidence was found that the viscosity, reduced by shear-thinning in the printhead nozzle, recovered as the drop formed. The low viscosity values measured for the drops in flight were associated with the strong oscillation induced by ligament retraction, while for a weakly perturbed drop the viscosity remained high. Surface tension values in the presence of surfactant were significantly higher than the equilibrium values, and consistent with the surface age of the drops. [Graphical abstract - see article]This work was supported by EPSRC and a consortium of industrial partners (EPSRC Grant no. EP/H018913/1: Innovation in industrial inkjet technology). The high-speed camera and high power flash lamp were provided by the EPSRC Engineering Instrument Pool and we thank Adrian Walker for his help.This is the final version of the article. It first appeared from Elsevier via http://dx.doi.org/10.1016/j.jnnfm.2015.05.00

    Large-scale air mass characteristics observed over the remote tropical Pacific Ocean during March-April 1999: Results from PEM-Tropics B field experiment

    Get PDF
    Eighteen long-range flights over the Pacific Ocean between 38° S to 20° N and 166° E to 90° W were made by the NASA DC-8 aircraft during the NASA Pacific Exploratory Mission (PEM) Tropics B conducted from March 6 to April 18, 1999. Two lidar systems were flown on the DC-8 to remotely measure vertical profiles of ozone (O3), water vapor (H2O), aerosols, and clouds from near the surface to the upper troposphere along their flight track. In situ measurements of a wide range of gases and aerosols were made on the DC-8 for comprehensive characterization of the air and for correlation with the lidar remote measurements. The transition from northeasterly flow of Northern Hemispheric (NH) air on the northern side of the Intertropical Convergence Zone (ITCZ) to generally easterly flow of Southern Hemispheric (SH) air south of the ITCZ was accompanied by a significant decrease in O3, carbon monoxide, hydrocarbons, and aerosols and an increase in H2O. Trajectory analyses indicate that air north of the ITCZ came from Asia and/or the United States, while the air south of the ITCZ had a long residence time over the Pacific, perhaps originating over South America several weeks earlier. Air south of the South Pacific Convergence Zone (SPCZ) came rapidly from the west originating over Australia or Africa. This air had enhanced O3 and aerosols and an associated decrease in H2O. Average latitudinal and longitudinal distributions of O3 and H2O were constructed from the remote and in situ O3 and H2O data, and these distributions are compared with results from PEM-Tropics A conducted in August-October 1996. During PEM-Tropics B, low O3 air was found in the SH across the entire Pacific Basin at low latitudes. This was in strong contrast to the photochemically enhanced O3 levels found across the central and eastern Pacific low latitudes during PEM-Tropics A. Nine air mass types were identified for PEM-Tropics B based on their O3, aerosols, clouds, and potential vorticity characteristics. The data from each flight were binned by altitude according to air mass type, and these results showed the relative observational frequency of the different air masses as a function of altitude in seven regions over the Pacific. The average chemical composition of the major air mass types was determined from in situ measurements in the NH and SH, and these results provided insight into the origin, lifetime, and chemistry of the air in these regions. Copyright 2001 by the American Geophysical Union
    corecore