159 research outputs found

    Element-resolved x-ray ferrimagnetic and ferromagnetic resonance spectroscopy

    Get PDF
    We report on the measurement of element-specific magnetic resonance spectra at gigahertz frequencies using x-ray magnetic circular dichroism (XMCD). We investigate the ferrimagnetic precession of Gd and Fe ions in Gd-substituted Yttrium Iron Garnet, showing that the resonant field and linewidth of Gd precisely coincide with Fe up to the nonlinear regime of parametric excitations. The opposite sign of the Gd x-ray magnetic resonance signal with respect to Fe is consistent with dynamic antiferromagnetic alignment of the two ionic species. Further, we investigate a bilayer metal film, Ni80_{80}Fe20_{20}(5 nm)/Ni(50 nm), where the coupled resonance modes of Ni and Ni80_{80}Fe20_{20} are separately resolved, revealing shifts in the resonance fields of individual layers but no mutual driving effects. Energy-dependent dynamic XMCD measurements are introduced, combining x-ray absorption and magnetic resonance spectroscopies.Comment: 16 pages, 8 figure

    Magnetic properties of cobalt and cobalt-platinum nanocrystals investigated by magneto-optical Kerr effect

    Get PDF
    Magneto-optical Kerr effect, is used to investigate the magnetization of film made of uncoalesced cobalt and cobalt-platinum nanocrystals. For the pure cobalt nanocrystals, different film morphologies are obtained through application of magnetic field during deposition. These morphologies have quite different magnetic properties, which is rationalized by considering dipolar interactions and the associated demagnetizing factor. We show that fast annealing can be used to trigger changes in the particles' crystalline structure while largely avoiding their coalescence. With increasing the annealing temperature, 2.7 nm CoPt nanocrystals show a transition from the magnetically soft face-centered-cubic phase to the hard face-centered-tetragonal L1(0) phase. In particular fast annealing to 950 K is shown to produce largely uncoalesced nanocrystals ferromagnetic at room temperature. With 7 nm cobalt nanocrystals, fast annealing at 500 K equally results in ferromagnetism at room temperature without inducing coalescence between the nanocrystals in the film. (C) 2004 American Institute of Physics

    Origin of interface magnetism in BiMnO3/SrTiO3 and LaAlO3/SrTiO3 heterostructures

    Get PDF
    Possible ferromagnetism induced in otherwise non-magnetic materials has been motivating intense research in complex oxide heterostructures. Here we show that a confined magnetism is realized at the interface between SrTiO3 and two insulating polar oxides, BiMnO3 and LaAlO3. By using polarization dependent x-ray absorption spectroscopy, we find that in both cases the magnetic order is stabilized by a negative exchange interaction between the electrons transferred to the interface and local magnetic moments. These local magnetic moments are associated to Ti3+ ions at the interface itself for LaAlO3/SrTiO3 and to Mn3+ ions in the overlayer for BiMnO3/SrTiO3. In LaAlO3/SrTiO3 the induced magnetic moments are quenched by annealing in oxygen, suggesting a decisive role of oxygen vacancies in the stabilization of interfacial magnetism.Comment: 5 pages, 4 figure

    Influence of free charge carrier density on the magnetic behavior of (Zn,Co)O thin film studied by Field Effect modulation of magnetotransport

    Get PDF
    The origin of (ferro)magnetic ordering in transition metal doped ZnO is a still open question. For applications it is fundamental to establish if it arises from magnetically ordered impurity clusters embedded into the semiconducting matrix or if it originates from ordering of magnetic ions dilute into the host lattice. In this latter case, a reciprocal effect of the magnetic exchange on the charge carriers is expected, offering many possibilities for spintronics applications. In this paper we report on the relationship between magnetic properties and free charge density investigated by using Zinc oxide based field effect transistors, in which the charge carrier density is modulated by more than 4 order of magnitude, from 10(16) to 10(20) e(-)/cm(3). The magnetotransport properties are employed to probe the magnetic status of the channel both in pure and cobalt doped zinc oxide transistors. We find that it is widely possible to control the magnetic scattering rates by field effect. We believe that this finding is a consequence of the modulation of magnetization and carrier spin polarization by the electric field. The observed effects can be explained by the change in size of bound magnetic polarons that induces a percolation magnetic ordering in the sample

    Oxidation induced enhanced magnetic susceptibility of Co islands on Pt(111)

    Get PDF
    We have studied the evolution of the magnetic properties of monolayer-high cobalt islands on a Pt(111) surface as function of their exposure to oxygen. We observe a sequential quenching of magnetic anisotropy and magnetic moment. For minute exposures to oxygen this leads to an enhancement of the maximum susceptibility of up to 66% for chi". We show that the reason for the reduction of the anisotropy before the one of the moment is due to preferential oxygen adsorption at the island edges, which are the main source of magnetic anisotropy. Our example shows how the enhanced chemical reactivity, combined with the enhanced anisotropy of low coordinated atoms, leads to surprising changes of magnetic properties upon exposure to oxygen

    Oscillatory magnetic anisotropy in one-dimensional atomic wires

    Get PDF
    One-dimensional Co atomic wires grown on Pt(997) have been investigated by x-ray magnetic circular dichroism. Strong changes of the magnetic properties are observed as the system evolves from 1D- to 2D-like. The easy axis of magnetization, the magnetic anisotropy energy, and the coercive field oscillate as a function of the transverse width of the wires, in agreement with theoretical predictions for 1D metal systems

    Strain-dependent magnetic configurations in manganite-titanate heterostructures probed with soft X-ray techniques

    Get PDF
    We present a detailed study on the strain-induced magnetic domain structure of a (La,Sr)MnO3 thin film epitaxially grown on a BaTiO3 substrate through the use of polarization-dependent X-ray photoemission electron microscopy and X-ray absorption spectroscopy. Angular-dependent measurements allow us to detect vector magnetization on a single-domain scale, and we relate the strain-induced changes in magnetic anisotropy of the ferromagnetic film to the ferroelectric domain structure of the underlying substrate using X-ray magnetic circular and linear dichroism spectro-microscopy. Comparisons to measurements on a nearly strain free film of (La,Sr)MnO3 grown on a (La,Sr)(Al,Ta)O3 substrate illustrate that the BaTiO3 ferroelectric domain structure imprints specific domain sizes and wall orientations in the (La,Sr)MnO3/BaTiO3 artificial multiferroic heterostructure. Furthermore, a change of the BaTiO3 ferroelectric domain structure either with temperature or with applied electric field results in a corresponding change in the (La,Sr)MnO3 ferromagnetic domain structure, thus showing a possible route to obtain room-temperature electric field control of magnetic anisotropy at the nanoscal
    • …
    corecore