846 research outputs found

    A Contingent Valuation Study of Lost Passive Use Values Resulting From the Exxon Valdez Oil Spill

    Get PDF
    We report on the results of a large-scale contingent valuation (CV) study conducted after the Exxon Valdez oil spill to assess the harm caused by it. Among the issues considered are the design features of the CV survey, its administration to a national sample of U.S. households, estimation of household willingness to pay to prevent another Exxon Valdez type oil spill, and issues related to reliability and validity of the estimates obtained. Events influenced by the study’s release are also briefly discussed.contingent valuation, natural resource damage assessment

    Personal area technologies for internetworked services

    Get PDF

    Review on the science and technology of water desalination by capacitive deionization

    Get PDF
    Porous carbon electrodes have significant potential for energy-efficient water desalination using a promising technology called Capacitive Deionization (CDI). In CDI, salt ions are removed from brackish water upon applying an electrical voltage difference between two porous electrodes, in which the ions will be temporarily immobilized. These electrodes are made of porous carbons optimized for salt storage capacity and ion and electron transport. We review the science and technology of CDI and describe the range of possible electrode materials and the various approaches to the testing of materials and devices. We summarize the range of options for CDI-designs and possible operational modes, and describe the various theoretical–conceptual approaches to understand the phenomenon of CDI

    Fabrication of bismuth nanowires with a silver nanocrystal shadowmask

    Get PDF
    We fabricated bismuth (Bi) nanowires with low energy electron beam lithography using silver (Ag) nanocrystal shadowmasks and a subsequent chlorine reactive ion etching. Submicron-size metal contacts on the single Bi nanowire were successfully prepared by in situ focused ion beam metal deposition for transport measurements. The temperature dependent resistance measurements on the 50 nm wide Bi nanowires showed that the resistance increased with decreasing temperature, which is characteristic of semiconductors and insulators

    Degradation analysis of tribologically loaded carbon nanotubes and carbon onions

    Get PDF
    Coating laser-patterned stainless-steel surfaces with carbon nanotubes (CNT) or carbon onions (CO) forms a tribological system that provides effective solid lubrication. Lubricant retention represents the fundamental mechanism of this system, as storing the particles inside the pattern prevents lubricant depletion in the contact area. In previous works, we used direct laser interference patterning to create line patterns with three different structural depths on AISI 304 stainless-steel platelets. Electrophoretic deposition subsequently coated the patterned surfaces with either CNTs or COs. Ball-on-disc friction tests were conducted to study the effect of structural depth on the solid lubricity of as-described surfaces. The results demonstrated that the shallower the textures, the lower the coefficient of friction, regardless of the applied particle type. This follow-up study examines the carbon nanoparticles’ structural degradation after friction testing on substrates patterned with different structural depths (0.24, 0.36, and 0.77 ”m). Raman characterization shows severe degradation of both particle types and is used to classify their degradation state within Ferrari’s three-stage amorphization model. It was further shown that improving CNT lubricity translates into increasing particle defectivity. This is confirmed by electron microscopy, which shows decreasing crystalline domains. Compared to CNTs, COderived tribofilms show even more substantial structural degradation

    Palladium-catalysed synthesis of arylnaphthoquinones as antiprotozoal and antimycobacterial agents

    Get PDF
    Malaria and tuberculosis are still among the leading causes of death in low-income countries. The 1,4-naphthoquinone (NQ) scaffold can be found in a variety of anti-infective agents. Herein, we report an optimised, high yield process for the preparation of various 2-arylnaphthoquinones by a palladium-catalysed Suzuki reaction. All synthesised compounds were evaluated for their in-vitro antiprotozoal and antimycobacterial activity. Antiprotozoal activity was assessed against Plasmodium falciparum (P.f.) NF54 and Trypanosoma brucei rhodesiense (T.b.r.) STIB900, and antimycobacterial activity against Mycobacterium smegmatis (M.s.) mc(2) 155. Substitution with pyridine and pyrimidine rings significantly increased antiplasmodial potency of our compounds. The 2-aryl-NQs exhibited trypanocidal activity in the nM range with a very favourable selectivity profile. (Pseudo)halogenated aryl-NQs were found to have a pronounced effect indicating inhibition of mycobacterial efflux pumps. Cytotoxicity of all compounds towards L6 cells was evaluated and the respective selectivity indices (SI) were calculated. In addition, the physicochemical parameters of the synthesised compounds were discussed

    Epicatechins Purified from Green Tea (Camellia sinensis) Differentially Suppress Growth of Gender-Dependent Human Cancer Cell Lines

    Get PDF
    The anticancer potential of catechins derived from green tea is not well understood, in part because catechin-related growth suppression and/or apoptosis appears to vary with the type and stage of malignancy as well as with the type of catechin. This in vitro study examined the biological effects of epicatechin (EC), epigallocatechin (EGC), EC 3-gallate (ECG) and EGC 3-gallate (EGCG) in cell lines from human gender-specific cancers. Cell lines developed from organ-confined (HH870) and metastatic (DU145) prostate cancer, and from moderately (HH450) and poorly differentiated (HH639) epithelial ovarian cancer were grown with or without EC, EGC, ECG or EGCG. When untreated cells reached confluency, viability and doubling time were measured for treated and untreated cells. Whereas EC treatment reduced proliferation of HH639 cells by 50%, EGCG suppressed proliferation of all cell lines by 50%. ECG was even more potent: it inhibited DU145, HH870, HH450 and HH639 cells at concentrations of 24, 27, 29 and 30 ”M, whereas EGCG inhibited DU145, HH870, HH450 and HH639 cells at concentrations 89, 45, 62 and 42 ”M. When compared with EGCG, ECG more effectively suppresses the growth of prostate cancer and epithelial ovarian cancer cell lines derived from tumors of patients with different stages of disease

    Reversibly compressible and freestanding monolithic carbon spherogels

    Get PDF
    We present a versatile strategy to tailor the nanostructure of monolithic carbon aerogels. By use of an aqueous colloidal solution of polystyrene in the sol-gel processing of resorcinol-formaldehyde gels, we can prepare, after supercritical drying and successive carbonization, freestanding monolithic carbon aerogels, solely composed of interconnected and uniformly sized hollow spheres, which we name carbon spherogels. Each sphere is enclosed by a microporous carbon wall whose thickness can be adjusted by the polystyrene concentration, which affects the pore texture as well as the mechanical properties of the aerogel monolith. In this study, we used monodisperse polystyrene spheres of approximately 250 nm diameter, which result in an inner diameter of the final hollow carbon spheres of approximately 200 ± 5 nm due to shrinkage during the carbonization process. The excellent homogeneity of the samples, as well as uniform sphere geometries, are confirmed by small- and angle X-ray scattering. The presence of macropores between the hollow spheres creates a monolithic network with the benefit of being reversibly compressible up to 10% linear strain without destruction. Electrochemical tests demonstrate the applicability of ground and CO2 activated carbon spherogels as electrode materials
    • 

    corecore