132 research outputs found
Anisotropic magneto-Coulomb effect versus spin accumulation in a ferromagnetic single-electron device
We investigate the magneto-transport characteristics of nanospintronics
single-electron devices. The devices consist of single non-magnetic
nano-objects (nanometer size nanoparticles of Al or Cu) connected to Co
ferromagnetic leads. The comparison with simulations allows us attribute the
observed magnetoresistance to either spin accumulation or anisotropic
magneto-Coulomb effect (AMC), two effects with very different origins. The fact
that the two effects are observed in similar samples demonstrates that a
careful analysis of Coulomb blockade and magnetoresistance behaviors is
necessary in order to discriminate them in magnetic single-electron devices. As
a tool for further studies, we propose a simple way to determine if spin
transport or AMC effect dominates from the Coulomb blockade I-V curves of the
spintronics device
Fractal dimension and size scaling of domains in thin films of multiferroic BiFeO3
We have analyzed the morphology of ferroelectric domains in very thin films
of multiferroic BiFeO3. Unlike the more common stripe domains observed in
thicker films BiFeO3 or in other ferroics, the domains tend not to be straight,
but irregular in shape, with significant domain wall roughening leading to a
fractal dimensionality. Also contrary to what is usually observed in other
ferroics, the domain size appears not to scale as the square root of the film
thickness. A model is proposed in which the observed domain size as a function
of film thickness can be directly linked to the fractal dimension of the
domains.Comment: 4 pages, 3 figure
Shear effects in lateral piezoresponse force microscopy at 180 ferroelectric domain walls
In studies using piezoresponse force microscopy, we observe a non-zero
lateral piezoresponse at 180 domain walls in out-of-plane polarized,
c-axis-oriented tetragonal ferroelectric Pb(ZrTi)O
epitaxial thin films. We attribute these observations to a shear strain effect
linked to the sign change of the piezoelectric coefficient through the
domain wall, in agreement with theoretical predictions. We show that in
monoclinically distorted tetragonal BiFeO films, this effect is
superimposed on the lateral piezoresponse due to actual in-plane polarization,
and has to be taken into account in order to correctly interpret the
ferroelectric domain configuration.Comment: 4 pages, 3 figure
Photovoltaic response around a unique180° ferroelectric domain wall in single crystalline BiFeO3
Using an experimental setup designed to scan a submicron sized light spot and collect the photogenerated current through larger electrodes, we map the photovoltaic response in ferroelectric BiFeO3 single crystals. We study the effect produced by a unique 180° ferroelectric domain wall (DW) and show that the photocurrent maps are significantly affected by its presence and shape. The effect is large in its vicinity and in the Schottky barriers at the interface with the Au electrodes, but no extra photocurrent is observed when the illuminating spot touches the DW, indicating that this particular entity is not the heart of specific photo-electric properties. Using 3D modelling, we argue that the measured effect is due to the spatial distribution of internal fields which are significantly affected by the charge of the DW due to its distortion
Terahertz wave generation via optical rectification from multiferroic BiFeO3
We detected broadband coherent terahertz (THz) emission from multiferroic
BiFeO3 after illuminating a high-quality bulk single ferroelectric domain
crystal with a ~100 fs optical pulse. The dependence of the emitted THz
waveform on the energy and polarization of the optical pulse is consistent with
the optical rectification mechanism of THz emission. The THz emission provides
a sensitive probe of the electric polarization state of BiFeO3, enabling
applications in ferroelectric memories and ferroelectric domain imaging. We
also report room-temperature THz optical constants of BiFeO3.Comment: accepted for publication in Applied Physics Letter
Magnetic patterning of (Ga,Mn)As by hydrogen passivation
We present an original method to magnetically pattern thin layers of
(Ga,Mn)As. It relies on local hydrogen passivation to significantly lower the
hole density, and thereby locally suppress the carrier-mediated ferromagnetic
phase. The sample surface is thus maintained continuous, and the minimal
structure size is of about 200 nm. In micron-sized ferromagnetic dots
fabricated by hydrogen passivation on perpendicularly magnetized layers, the
switching fields can be maintained closer to the continuous film coercivity,
compared to dots made by usual dry etch techniques
Spin injection in a single metallic nanoparticle: a step towards nanospintronics
We have fabricated nanometer sized magnetic tunnel junctions using a new
nanoindentation technique in order to study the transport properties of a
single metallic nanoparticle. Coulomb blockade effects show clear evidence for
single electron tunneling through a single 2.5 nm Au cluster. The observed
magnetoresistance is the signature of spin conservation during the transport
process through a non magnetic cluster.Comment: 3 page
Towards two-dimensional metallic behavior at LaAlO3/SrTiO3 interfaces
Using a low-temperature conductive-tip atomic force microscope in
cross-section geometry we have characterized the local transport properties of
the metallic electron gas that forms at the interface between LaAlO3 and
SrTiO3. At low temperature, we find that the carriers do not spread away from
the interface but are confined within ~10 nm, just like at room temperature.
Simulations taking into account both the large temperature and electric-field
dependence of the permittivity of SrTiO3 predict a confinement over a few nm
for sheet carrier densities larger than ~6 10^13 cm-2. We discuss the
experimental and simulations results in terms of a multi-band carrier system.
Remarkably, the Fermi wavelength estimated from Hall measurements is ~16 nm,
indicating that the electron gas in on the verge of two-dimensionality.Comment: Accepted for publication in Physical Review Letter
- …