27 research outputs found

    Crystallographic reconstruction study of the effects of finish rolling temperature on the variant selection during bainite transformation in C-Mn high-strength steels

    Full text link
    The effect of finish rolling temperature (FRT) on the austenite- () to-bainite () phase transformation is quantitatively investigated in high-strength C-Mn steels. In particular, the present study aims to clarify the respective contributions of the conditioning during the hot rolling and the variant selection (VS) during the phase transformation to the inherited texture. To this end, an alternative crystallographic reconstruction procedure, which can be directly applied to experimental electron backscatter diffraction (EBSD) mappings, is developed by combining the best features of the existing models: the orientation relationship (OR) refinement, the local pixel-by-pixel analysis and the nuclei identification and spreading strategy. The applicability of this method is demonstrated on both quenching and partitioning (Q&P) and as-quenched lath-martensite steels. The results obtained on the C-Mn steels confirm that the sample finish rolled at the lowest temperature (829{\deg}C) exhibits the sharpest transformation texture. It is shown that this sharp texture is exclusively due to a strong VS from parent brass {110}, S {213} and Goss {110} grains, whereas the VS from the copper {112} grains is insensitive to the FRT. In addition, a statistical VS analysis proves that the habit planes of the selected variants do not systematically correspond to the predicted active slip planes using the Taylor model. In contrast, a correlation between the Bain group to which the selected variants belong and the FRT is clearly revealed, regardless of the parent orientation. These results are discussed in terms of polygranular accommodation mechanisms, especially in view of the observed development in the hot-rolled samples of high-angle grain boundaries with misorientation axes between and

    Effect of niobium on the microstructure and mechanical properties of hot rolled microalloyed steels after recrystallization-controlled rolling

    No full text
    Microalloyed steels with increased strength and ductility are of considerable interest for use in the 'as-hotrolled' condition. However, there is a lack of information on their microstructural characteristics and mechanical properties. Seven different microalloyed steels with variable Nb and C content were evaluated in this work. First, characterization of the microstructure by optical and scanning and transmission electron microscopy was performed. Different microstructural constituents and grain size distributions were observed, and three different groups of precipitates were identified. For all steels, tensile tests were performed and ductile-to-brittle transition temperatures were determined. Finally, the complex interplay between microstructural features and mechanical properties was analyzed to determine structure-property relations for the steels under evaluation

    Effects of tungsten addition on the microstructure and mechanical properties of microalloyed forging steels

    Get PDF
    In the current study, the effects of tungsten (W) addition on the microstructure, hardness, and room/low [223 K and 173 K (-50 C and -100 C)] temperature tensile properties of microalloyed forging steels were systematically investigated. Four kinds of steel specimens were produced by varying the W additions (0, 0.1, 0.5, and 1 wt pct). The microstructure showed that the addition of W does not have any noticeable effect on the amount of precipitates. The precipitates in W-containing steels were all rich in W, and the W concentration in the precipitates increased with the increasing W content. The mean sizes of both austenite grains and precipitates decreased with the increasing W content. When the W content was equal to or less than 0.5 pct, the addition of W favored the formation of allotriomorphic ferrite, which subsequently promoted the development of acicular ferrite in the microalloyed forging steels. The results of mechanical tests indicated that W plays an important role in increasing the hardness and tensile strength. When the testing temperature was decreased, the tensile strength showed an increasing trend. Both the yield strength and the ultimate tensile strength obeyed an Arrhenius type of relation with respect to temperature. When the temperature was decreased from 223 K to 173 K (from -50 C to -100 C), a ductile-to-brittle transition (DBT) of the specimen with 1 pct W occurred. The addition of W favored a higher DBT temperature. From the microstructural and mechanical test results, it is demonstrated that the addition of 0.5 pct W results in the best combination of excellent room/low-temperature tensile strength and ductility. 2013 The Minerals, Metals & Materials Society and ASM International

    Model for strain-induced precipitation kinetics in microalloyed steels

    Get PDF
    Based on Dutta and Sellars's expression for the start of strain-induced precipitation in microalloyed steels, a new model has been constructed which takes into account the influence of variables such as microalloying element percentages, strain, temperature, strain rate, and grain size. Although the equation given by these authors reproduces the typical >C> shape of the precipitation start time (P s) curve well, the expression is not reliable for all cases. Recrystallization-precipitation-time-temperature diagrams have been plotted thanks to a new experimental study carried out by means of hot torsion tests on approximately twenty microalloyed steels with different Nb, V, and Ti contents. Mathematical analysis of the results recommends the modification of some parameters such as the supersaturation ratio (K s) and constant B, which is no longer a constant, but a function of K s when the latter is calculated at the nose temperature (T N) of the P s curve. The value of parameter B is deduced from the minimum point or nose of the P s curve, where 鈭倀 0.05/鈭俆 is equal to zero, and it can be demonstrated that B cannot be a constant. The new expressions for these parameters are derived from the latest studies undertaken by the authors and this work represents an attempt to improve the model. The expressions are now more consistent and predict the precipitation-time-temperature curves with remarkable accuracy. The model for strain-induced precipitation kinetics is completed by means of Avrami's equation. 漏 2013 The Minerals, Metals & Materials Society and ASM International.Peer Reviewe
    corecore