3,494 research outputs found

    One-Nucleon Effective Generators of the Poincare Group derived from a Field Theory: Mass Renormalization

    Get PDF
    We start from a Lagrangian describing scalar "nucleons" and mesons which interact through a simple vertex. Okubo's method of unitary transformation is used to describe a single nucleon dressed by its meson cloud. We find an expression for the physical mass of the nucleon being correct up to second order in the coupling constant. It is then verified that this result is the same as the corresponding expression found by Feynman techniques. Finally we also express the three boost operators in terms of the physical nucleon mass. Doing so we find expressions for all the ten generators of Poincar\'e transformations for the system of one single dressed nucleon.Comment: 19 pages, no figure

    Scattering of neutrinos on a polarized electron target as a test for new physics beyond the Standard Model

    Full text link
    In this paper, we analyze the scattering of the neutrino beam on the polarized electron target, and predict the effects of two theoretically possible scenarios beyond the Standard Model. In both scenarios, Dirac neutrinos are assumed to be massive. First, we consider how the existence of CP violation phase between the complex vector V and axial A couplings of the Left-handed neutrinos affects the azimuthal dependence of the differential cross section. The future superbeam and neutrino factory experiments will provide the unique opportunity for the leptonic CP violation studies, if the large magnetized sampling calorimeters with good event reconstruction capabilities are build. Next, we take into account a scenario with the participation of the exotic scalar S coupling of the Right-handed neutrinos in addition to the standard vector V and axial A couplings of the Left-handed neutrinos. The main goal is to show how the presence of the R-handed neutrinos, in the above process changes the spectrum of recoil electrons in relation to the expected Standard Model prediction, using the current limits on the non-standard couplings. The interference terms between the standard and exotic couplings in the differential cross section depend on the angle α\alpha between the transverse incoming neutrino polarization and the transverse electron polarization of the target, and do not vanish in the limit of massless neutrino. The detection of the dependence on this angle in the energy spectrum of recoil electrons would be a signature of the presence of the R-handed neutrinos in the neutrino-electron scattering. To make this test feasible, the polarized artificial neutrino source needs to be identified.Comment: 11 pages, 3 eps figures, revtex, submitted to publicatio

    Access control for social care platforms using fast healthcare interoperability resources

    Get PDF
    The definition of authorization policies is essential to prevent information misuse and to guarantee that only authorized personnel can access specific information. Since not everyone is familiar with special purpose languages, an interpretation tool can allow the management of policies and rules using natural languages. This paper focuses on a parser developed as a component of a platform to support the care of community-dwelling older adults, the SOCIAL platform, allowing to create, read, update and delete authorization policies and rules, using natural languages.publishe

    Local Electronic Correlation at the Two-Particle Level

    Full text link
    Electronic correlated systems are often well described by dynamical mean field theory (DMFT). While DMFT studies have mainly focused hitherto on one-particle properties, valuable information is also enclosed into local two-particle Green's functions and vertices. They represent the main ingredient to compute momentum-dependent response functions at the DMFT level and to treat non-local spatial correlations at all length scales by means of diagrammatic extensions of DMFT. The aim of this paper is to present a DMFT analysis of the local reducible and irreducible two-particle vertex functions for the Hubbard model in the context of an unified diagrammatic formalism. An interpretation of the observed frequency structures is also given in terms of perturbation theory, of the comparison with the atomic limit, and of the mapping onto the attractive Hubbard model.Comment: 29 pages, 26 Figures. Accepted for publication in Phys. Rev.

    Aktuelle theoretische AnsÀtze und empirische Befunde im Bereich der Lehr-Lern-Forschung:Schwerpunkt Erwachsenenbildung

    Full text link
    Das Gutachten dient dem im Jahr 2004 vom DIE ins Leben gerufenen „Expertenkreis Lehre in der Weiterbildung“ als Arbeitsgrundlage. Es stellt die aktuellen AnsĂ€tze und Befunde im Bereich des Lehrens und Lernens mit Schwerpunkt auf der Erwachsenenbildung dar. Neuere AnsĂ€tze zum Lehren und Lernen aus der Empirischen PĂ€dagogik und PĂ€dagogischen Psychologie werden vorgestellt und auf spezifische Aspekte der Weiterbildung wie Communities, berufliche Weiterbildung und Blended Learning eingegangen. Die verschiedenen Ebenen, Aufgabenfelder und Phasen des Bildungsmanagements werden beleuchtet und das Bildungscontrolling nĂ€her erlĂ€utert. Danach folgen AusfĂŒhrungen zu einem mitarbeiterorientierten Implementationsmodell innovativer Lehr-Lern-AnsĂ€tze in Organisationen. Anhand der vorgestellten AnsĂ€tze und Befunde des Lehrens und Lernens werden Folgerungen fĂŒr die Forschung und fĂŒr die Ausund Weiterbildung der Lehrenden im Bereich der Erwachsenenbildung gezogen

    Thermodynamics of a model for RNA folding

    Get PDF
    We analyze the thermodynamic properties of a simplified model for folded RNA molecules recently studied by G. Vernizzi, H. Orland, A. Zee (in {\it Phys. Rev. Lett.} {\bf 94} (2005) 168103). The model consists of a chain of one-flavor base molecules with a flexible backbone and all possible pairing interactions equally allowed. The spatial pseudoknot structure of the model can be efficiently studied by introducing a N×NN \times N hermitian random matrix model at each chain site, and associating Feynman diagrams of these models to spatial configurations of the molecules. We obtain an exact expression for the topological expansion of the partition function of the system. We calculate exact and asymptotic expressions for the free energy, specific heat, entanglement and chemical potential and study their behavior as a function of temperature. Our results are consistent with the interpretation of 1/N1/N as being a measure of the concentration of Mg++\rm{Mg}^{++} in solution.Comment: 11 pages, 4 figure

    Langevin Trajectories between Fixed Concentrations

    Full text link
    We consider the trajectories of particles diffusing between two infinite baths of fixed concentrations connected by a channel, e.g. a protein channel of a biological membrane. The steady state influx and efflux of Langevin trajectories at the boundaries of a finite volume containing the channel and parts of the two baths is replicated by termination of outgoing trajectories and injection according to a residual phase space density. We present a simulation scheme that maintains averaged fixed concentrations without creating spurious boundary layers, consistent with the assumed physics

    Non-Markovian dynamics of a nanomechanical resonator measured by a quantum point contact

    Full text link
    We study the dynamics of a nanomechanical resonator (NMR) subject to a measurement by a low transparency quantum point contact (QPC) or tunnel junction in the non-Markovian domain. We derive the non-Markovian number-resolved (conditional) and unconditional master equations valid to second order in the tunneling Hamiltonian without making the rotating-wave approximation and the Markovian approximation, generally made for systems in quantum optics. Our non-Markovian master equation reduces, in appropriate limits, to various Markovian versions of master equations in the literature. We find considerable difference in dynamics between the non-Markovian cases and its Markovian counterparts. We also calculate the time-dependent transport current through the QPC which contains information about the measured NMR system. We find an extra transient current term proportional to the expectation value of the symmetrized product of the position and momentum operators of the NMR. This extra current term, with a coefficient coming from the combination of the imaginary parts of the QPC reservoir correlation functions, has a substantial contribution to the total transient current in the non-Markovian case, but was generally ignored in the studies of the same problem in the literature. Considering the contribution of this extra term, we show that a significantly qualitative and quantitative difference in the total transient current between the non-Markovian and the Markovian wide-band-limit cases can be observed. Thus, it may serve as a witness or signature of the non-Markovian features in the coupled NMR-QPC system.Comment: Accepted for publication in Physical Review B (20 pages, 13 figures
    • 

    corecore