634 research outputs found

    Mausoleum of Khoja Akhmed Yassawi as the element of regional identity formation in modern architecture of Kazakhstan

    Get PDF
    The formation of a regional identity is a very important cultural and socio-political trend in the formation of an independent state. Against the background of the acculturation of the Soviet period, in post-Soviet conditions there is a search for the origins of the traditional spiritual and material culture of Kazakhstan. From this perspective, one of the most famous architectural monuments of Central Asia is of great interest – the Mausoleum of Khoja Akhmed Yassavi in the city of Turkestan. The architecture of the mausoleum reflects the local traditions of formation and has become a source of inspiration for architects of different periods. The article analyses the cultural and historical significance of the mausoleum and its role in the formation of regional identity in the modern architecture of Kazakhstan

    Highly sensitive electromechanical piezoresistive pressure sensors based on large-area layered PtSe2_{2} films

    Full text link
    Two-dimensional (2D) layered materials are ideal for micro- and nanoelectromechanical systems (MEMS/NEMS) due to their ultimate thinness. Platinum diselenide (PtSe2_{2}), an exciting and unexplored 2D transition metal dichalcogenides (TMD) material, is particularly interesting because its scalable and low temperature growth process is compatible with silicon technology. Here, we explore the potential of thin PtSe2_{2} films as electromechanical piezoresistive sensors. All experiments have been conducted with semimetallic PtSe2_{2} films grown by thermally assisted conversion of Pt at a CMOS-compatible temperature of 400{\deg}C. We report high negative gauge factors of up to -84.8 obtained experimentally from PtSe2_{2} strain gauges in a bending cantilever beam setup. Integrated NEMS piezoresistive pressure sensors with freestanding PMMA/PtSe2_{2} membranes confirm the negative gauge factor and exhibit very high sensitivity, outperforming previously reported values by orders of magnitude. We employ density functional theory (DFT) calculations to understand the origin of the measured negative gauge factor. Our results suggest PtSe2_{2} as a very promising candidate for future NEMS applications, including integration into CMOS production lines.Comment: 33 pages, 5 figures, including supporting information with 10 figure

    The operational window of carbon nanotube electrical wires treated with strong acids and oxidants

    Get PDF
    Conventional metal wires suffer from a significant degradation or complete failure in their electrical performance, when subjected to harsh oxidizing environments, however wires constructed from Carbon Nanotubes (CNTs) have been found to actually improve in their electrical performance when subjected to these environments. These opposing reactions may provide new and interesting applications for CNT wires. Yet, before attempting to move to any real-world harsh environment applications, for the CNT wires, it is essential that this area of their operation be thoroughly examined. To investigate this, CNT wires were treated with multiple combinations of the strongest acids and halogens. The wires were then subjected to conductivity measurements, current carrying capacity tests, as well as Raman, microscopy and thermogravimetric analysis to enable the identification of both the limits of oxidative conductivity boosting and the onset of physical damage to the wires. These experiments have led to two main conclusions. Firstly, that CNT wires may operate effectively in harsh oxidizing environments where metal wires would easily fail and secondly, that the highest conductivity increase of the CNT wires can be achieved through a process of annealing, acetone and HCl purification followed by either H2O2 and HClO4 or Br2 treatment

    Vertical Field Effect Transistor based on Graphene-WS2 Heterostructures for flexible and transparent electronics

    Full text link
    The celebrated electronic properties of graphene have opened way for materials just one-atom-thick to be used in the post-silicon electronic era. An important milestone was the creation of heterostructures based on graphene and other two-dimensional (2D) crystals, which can be assembled in 3D stacks with atomic layer precision. These layered structures have already led to a range of fascinating physical phenomena, and also have been used in demonstrating a prototype field effect tunnelling transistor - a candidate for post-CMOS technology. The range of possible materials which could be incorporated into such stacks is very large. Indeed, there are many other materials where layers are linked by weak van der Waals forces, which can be exfoliated and combined together to create novel highly-tailored heterostructures. Here we describe a new generation of field effect vertical tunnelling transistors where 2D tungsten disulphide serves as an atomically thin barrier between two layers of either mechanically exfoliated or CVD-grown graphene. Our devices have unprecedented current modulation exceeding one million at room temperature and can also operate on transparent and flexible substrates

    Second trimester inflammatory and metabolic markers in women delivering preterm with and without preeclampsia.

    Get PDF
    ObjectiveInflammatory and metabolic pathways are implicated in preterm birth and preeclampsia. However, studies rarely compare second trimester inflammatory and metabolic markers between women who deliver preterm with and without preeclampsia.Study designA sample of 129 women (43 with preeclampsia) with preterm delivery was obtained from an existing population-based birth cohort. Banked second trimester serum samples were assayed for 267 inflammatory and metabolic markers. Backwards-stepwise logistic regression models were used to calculate odds ratios.ResultsHigher 5-α-pregnan-3β,20α-diol disulfate, and lower 1-linoleoylglycerophosphoethanolamine and octadecanedioate, predicted increased odds of preeclampsia.ConclusionsAmong women with preterm births, those who developed preeclampsia differed with respect metabolic markers. These findings point to potential etiologic underpinnings for preeclampsia as a precursor to preterm birth

    Noseleaf Dynamics during Pulse Emission in Horseshoe Bats

    Get PDF
    Horseshoe bats emit their biosonar pulses nasally and diffract the outgoing ultrasonic waves by conspicuous structures that surrounded the nostrils. Here, we report quantitative experimental data on the motion of a prominent component of these structures, the anterior leaf, using synchronized laser Doppler vibrometry and acoustic recordings in the greater horseshoe bat (Rhinolophus ferrumequinum). The vibrometry data has demonstrated non-random motion patterns in the anterior leaf. In these patterns, the outer rim of the walls of the anterior leaf twitches forward and inwards to decrease the aperture of the noseleaf and increase the curvature of its surfaces. Noseleaf displacements were correlated with the emitted ultrasonic pulses. After their onset, the inward displacements increased monotonically towards their maximum value which was always reached within the duration of the biosonar pulse, typically towards its end. In other words, the anterior leaf’s surfaces were moving inwards during most of the pulse. Non-random motions were not present in all recorded pulse trains, but could apparently be switched on or off. Such switches happened between sequences of consecutive pulses but were never observed between individual pulses within a sequence. The amplitudes of the emitted biosonar pulse and accompanying noseleaf movement were not correlated in the analyzed data set. The measured velocities of the noseleaf surface were too small to induce Doppler shifts of a magnitude with a likely significance. However, the displacement amplitudes were significant in comparison with the overall size of the anterior leaf and the sound wavelengths. These results indicate the possibility that horseshoe bats use dynamic sensing principles on the emission side of their biosonar system. Given the already available evidence that such mechanisms exist for biosonar reception, it may be hypothesized that time-variant mechanisms play a pervasive role in the biosonar sensing of horseshoe bats
    corecore