117 research outputs found

    Electronic structure and magnetic properties of RMnX (R= Mg, Ca, Sr, Ba, Y; X= Si, Ge) studied by KKR method

    Full text link
    Electronic structure calculations, using the charge and spin self-consistent Korringa- Kohn-Rostoker (KKR) method, have been performed for several RRMnXX compounds (RR = Mg, Ca, Sr, Ba, Y; XX = Si, Ge) of the CeFeSi-type structure. The origin of their magnetic properties has been investigated emphasizing the role of the Mn sublattice. The significant influence of the Mn-Mn and Mn-XX interatomic distances on the Mn magnetic moment value is delineated from our computations, supporting many neutron diffraction data. We show that the marked change of μMn\mu_{Mn} with the Mn-Mn and Mn-XX distances resulted from a redistribution between spin-up and spin-down dd-Mn DOS rather than from different fillings of the Mn 3dd-shell. Bearing in mind that the neutron diffraction data reported for the RRMnXX compounds are rather scattered, the KKR computations of μMn\mu_{Mn} are in fair agreement with the experimental values. Comparing density of states near EFE_{F} obtained in different magnetic orderings, one can notice that the entitled RRMnXX systems seem to 'adapt' their magnetic structures to minimize the DOS in the vicinity of the Fermi level. Noteworthy, the SrMnGe antiferromagnet exhibits a pseudo-gap behaviour at EFE_{F}, suggesting anomalous electron transport properties. In addition, the F-AF transition occurring in the disordered La1x_{1-x}Yx_{x}MnSi alloy for the 0.8<x<10.8<x<1 range is well supported by the DOS features of La0.2_{0.2}Y0.8_{0.8}MnSi. In contrast to the investigated RRMnXX compounds, YFeSi was found to be non-magnetic, which is in excellent agreement with the experimental data.Comment: 10 pages + 14 figures, to appear in Eur. Phys. Jour.

    Rapidly driven nanoparticles: Mean first-passage times and relaxation of the magnetic moment

    Full text link
    We present an analytical method of calculating the mean first-passage times (MFPTs) for the magnetic moment of a uniaxial nanoparticle which is driven by a rapidly rotating, circularly polarized magnetic field and interacts with a heat bath. The method is based on the solution of the equation for the MFPT derived from the two-dimensional backward Fokker-Planck equation in the rotating frame. We solve these equations in the high-frequency limit and perform precise, numerical simulations which verify the analytical findings. The results are used for the description of the rates of escape from the metastable domains which in turn determine the magnetic relaxation dynamics. A main finding is that the presence of a rotating field can cause a drastic decrease of the relaxation time and a strong magnetization of the nanoparticle system. The resulting stationary magnetization along the direction of the easy axis is compared with the mean magnetization following from the stationary solution of the Fokker-Planck equation.Comment: 24 pages, 4 figure

    Debye formulas for a relaxing system with memory

    Get PDF
    Rate (master) equations are ubiquitous in statistical physics, yet, to the best of our knowledge, a rate equation with memory has previously never been considered. We write down an integro-differential rate equation for the evolution of a thermally relaxing system with memory. For concreteness we adopt as a model a single-domain magnetic particle driven by a small ac field and derive the modified Debye formulas. For any memory time Θ the in-phase component of the resultant ac susceptibility is positive at small probing frequencies ω, but becomes negative at large ω. The system thus exhibits frequency induced diamagnetism. For comparison we also consider particle pairs with dipolar coupling. The memory effect is found to be enhanced by ferromagnetic coupling and suppressed by antiferromagnetic coupling. Numerical calculations support the prediction of a negative susceptibility which arises from a phase shift induced by the memory effect. It is proposed that the onset of frequency induced diamagnetism represents a viable experimental signature of correlated noise

    Investigation of environmental photocatalysis by solid-state NMR spectroscopy

    No full text
    Solid-state NMR methods are applied to study the detailed surface chemistry of a number of promising semiconductor and zeolite based photocatalysts. Emphasis is made on the direct detection of reaction intermediates in the degradation of environmental pollutants. The development of new and efficient UV or visible light activated photocatalytic systems using coated optical microfiber catalysts is also discussed. © 2000 Elsevier Science B.V. All rights reserved

    Study of stresses in texture components using neutron diffraction

    No full text
    In this work a new method for analysis of neutron diffraction results obtained during “in situ” tensile load is proposed and tested. The methodology is based on the measurements of lattice strains during “in situ” tensile test for several hkl reflections and for different orientations of the sample with respect to the scattering vector. As the result the full stress tensor for preferred texture orientations in function of applied stress can be determined with help of crystallite group method. The experimental data are presented and compared with self-consistent model calculations performed for groups of grains corresponding to the measured hkl reflections. © 2014, Trans Tech Publications
    corecore