7,604 research outputs found

    Building Blocks of Physical States in a Non-Critical 3-Brane on R*S^3

    Full text link
    The physical states in a world-volume model of a non-critical 3-brane are systematically constructed using techniques of four-dimensional conformal field theories on R*S^3 developed recently. Invariant combinations of creation modes under a special conformal transformation provide building blocks of physical states. Any state can be created by acting with such building blocks on a conformally invariant vacuum in an invariant way under the other conformal charges: the Hamiltonian and rotation generators on S^3. We explicitly construct building blocks for scalar, vector and gravitational fields, and classify them as finite types.Comment: 56 page

    CMB Anisotropies Reveal Quantized Gravity

    Full text link
    A novel primordial spectrum with a dynamical scale of quantum gravity origin is proposed to explain the sharp fall off of the angular power spectra at low multipoles in the COBE and WMAP observations. The spectrum is derived from quantum fluctuations of the scalar curvature in a renormalizable model of induced gravity. This model describes the very early universe by the conformal field fluctuating about an inflationary background with the expansion time constant of order of the Planck mass.Comment: 12 pages, 2 figure

    Vertex Operators in 4D Quantum Gravity Formulated as CFT

    Full text link
    We study vertex operators in 4D conformal field theory derived from quantized gravity, whose dynamics is governed by the Wess-Zumino action by Riegert and the Weyl action. Conformal symmetry is equal to diffeomorphism symmetry in the ultraviolet limit, which mixes positive-metric and negative-metric modes of the gravitational field and thus these modes cannot be treated separately in physical operators. In this paper, we construct gravitational vertex operators such as the Ricci scalar, defined as space-time volume integrals of them are invariant under conformal transformations. Short distance singularities of these operator products are computed and it is shown that their coefficients have physically correct sign. Furthermore, we show that conformal algebra holds even in the system perturbed by the cosmological constant vertex operator as in the case of the Liouville theory shown by Curtright and Thorn.Comment: 26 pages, rewrote review part concisely, added explanation

    Antennas for 20/30 GHz and beyond

    Get PDF
    Antennas of 20/30 GHz and higher frequency, due to the small wavelength, offer capabilities for many space applications. With the government-sponsored space programs (such as ACTS) in recent years, the industry has gone through the learning curve of designing and developing high-performance, multi-function antennas in this frequency range. Design and analysis tools (such as the computer modelling used in feedhorn design and reflector surface and thermal distortion analysis) are available. The components/devices (such as BFN's, weight modules, feedhorns and etc.) are space-qualified. The manufacturing procedures (such as reflector surface control) are refined to meet the stringent tolerance accompanying high frequencies. The integration and testing facilities (such as Near-Field range) also advance to facilitate precision assembling and performance verification. These capabilities, essential to the successful design and development of high-frequency spaceborne antennas, shall find more space applications (such as ESGP) than just communications

    Making a Universe

    Get PDF
    For understanding the origin of anisotropies in the cosmic microwave background, rules to construct a quantized universe is proposed based on the dynamical triangulation method of the simplicial quantum gravity. A dd-dimensional universe having the topology Dd D^d is created numerically in terms of a simplicial manifold with dd-simplices as the building blocks. The space coordinates of a universe are identified on the boundary surface Sd1 S^{d-1} , and the time coordinate is defined along the direction perpendicular to Sd1 S^{d-1} . Numerical simulations are made mainly for 2-dimensional universes, and analyzed to examine appropriateness of the construction rules by comparing to analytic results of the matrix model and the Liouville theory. Furthermore, a simulation in 4-dimension is made, and the result suggests an ability to analyze the observations on anisotropies by comparing to the scalar curvature correlation of a S2 S^2 -surface formed as the last scattering surface in the S3 S^3 universe.Comment: 27pages,18figures,using jpsj.st

    Angle-resolved photoemission spectra in the cuprates from the d-density wave theory

    Full text link
    Angle-resolved photoemission spectra present two challenges for the d-density wave (DDW) theory of the pseudogap state of the cuprates: (1) hole pockets near (π/2,π/2)(\pi/2,\pi/2) are not observed, in apparent contradiction with the assumption of translational symmetry breaking, and (2) there are no well-defined quasiparticles at the {\it antinodal} points, in contradiction with the predictions of mean-field theory of this broken symmetry state. Here, we show how these puzzles can be resolved.Comment: 4 pages, 3 eps figures, RevTex
    corecore